| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| e107 CMS version 3.2.1 contains a file upload vulnerability that allows authenticated administrative users to bypass upload restrictions and execute PHP files. Attackers can upload malicious PHP files to parent directories by manipulating the upload URL parameter, enabling remote code execution through the Media Manager import feature. |
| An optional feature of PCI MSI called "Multiple Message" allows a
device to use multiple consecutive interrupt vectors. Unlike for MSI-X,
the setting up of these consecutive vectors needs to happen all in one
go. In this handling an error path could be taken in different
situations, with or without a particular lock held. This error path
wrongly releases the lock even when it is not currently held.
|
| Mailhog 1.0.1 contains a stored cross-site scripting vulnerability that allows attackers to inject malicious scripts through email attachments. Attackers can send crafted emails with XSS payloads to execute arbitrary API calls, including message deletion and browser manipulation. |
| J2EE Misconfiguration: Data Transmission Without Encryption vulnerability in Apache NimBLE.
Improper handling of Pause Encryption procedure on Link Layer results in a previously encrypted connection being left in un-encrypted state allowing an eavesdropper to observe the remainder of the exchange.
This issue affects Apache NimBLE: through <= 1.8.0.
Users are recommended to upgrade to version 1.9.0, which fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport
[Why]
Potential out of bounds access in dml2_calculate_rq_and_dlg_params()
because the value of out_lowest_state_idx used as an index for FCLKChangeSupport
array can be greater than 1.
[How]
Currently dml2 core specifies identical values for all FCLKChangeSupport
elements. Always use index 0 in the condition to avoid out of bounds access. |
| Algo 8028 Control Panel version 3.3.3 contains a command injection vulnerability in the fm-data.lua endpoint that allows authenticated attackers to execute arbitrary commands. Attackers can exploit the insecure 'source' parameter by injecting commands that are executed with root privileges, enabling remote code execution through a crafted POST request. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix out-of-bounds array access in ACPI package parsing
The hp_populate_*_elements_from_package() functions in the hp-bioscfg
driver contain out-of-bounds array access vulnerabilities.
These functions parse ACPI packages into internal data structures using
a for loop with index variable 'elem' that iterates through
enum_obj/integer_obj/order_obj/password_obj/string_obj arrays.
When processing multi-element fields like PREREQUISITES and
ENUM_POSSIBLE_VALUES, these functions read multiple consecutive array
elements using expressions like 'enum_obj[elem + reqs]' and
'enum_obj[elem + pos_values]' within nested loops.
The bug is that the bounds check only validated elem, but did not consider
the additional offset when accessing elem + reqs or elem + pos_values.
The fix changes the bounds check to validate the actual accessed index. |
| In the Linux kernel, the following vulnerability has been resolved:
ip6_gre: make ip6gre_header() robust
Over the years, syzbot found many ways to crash the kernel
in ip6gre_header() [1].
This involves team or bonding drivers ability to dynamically
change their dev->needed_headroom and/or dev->hard_header_len
In this particular crash mld_newpack() allocated an skb
with a too small reserve/headroom, and by the time mld_sendpack()
was called, syzbot managed to attach an ip6gre device.
[1]
skbuff: skb_under_panic: text:ffffffff8a1d69a8 len:136 put:40 head:ffff888059bc7000 data:ffff888059bc6fe8 tail:0x70 end:0x6c0 dev:team0
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:213 !
<TASK>
skb_under_panic net/core/skbuff.c:223 [inline]
skb_push+0xc3/0xe0 net/core/skbuff.c:2641
ip6gre_header+0xc8/0x790 net/ipv6/ip6_gre.c:1371
dev_hard_header include/linux/netdevice.h:3436 [inline]
neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618
neigh_output include/net/neighbour.h:556 [inline]
ip6_finish_output2+0xfb3/0x1480 net/ipv6/ip6_output.c:136
__ip6_finish_output net/ipv6/ip6_output.c:-1 [inline]
ip6_finish_output+0x234/0x7d0 net/ipv6/ip6_output.c:220
NF_HOOK_COND include/linux/netfilter.h:307 [inline]
ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247
NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318
mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855
mld_send_cr net/ipv6/mcast.c:2154 [inline]
mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Check for the presence of LS_NLA_TYPE_DGID correctly
The netlink response for RDMA_NL_LS_OP_IP_RESOLVE should always have a
LS_NLA_TYPE_DGID attribute, it is invalid if it does not.
Use the nl parsing logic properly and call nla_parse_deprecated() to fill
the nlattrs array and then directly index that array to get the data for
the DGID. Just fail if it is NULL.
Remove the for loop searching for the nla, and squash the validation and
parsing into one function.
Fixes an uninitialized read from the stack triggered by userspace if it
does not provide the DGID to a kernel initiated RDMA_NL_LS_OP_IP_RESOLVE
query.
BUG: KMSAN: uninit-value in hex_byte_pack include/linux/hex.h:13 [inline]
BUG: KMSAN: uninit-value in ip6_string+0xef4/0x13a0 lib/vsprintf.c:1490
hex_byte_pack include/linux/hex.h:13 [inline]
ip6_string+0xef4/0x13a0 lib/vsprintf.c:1490
ip6_addr_string+0x18a/0x3e0 lib/vsprintf.c:1509
ip_addr_string+0x245/0xee0 lib/vsprintf.c:1633
pointer+0xc09/0x1bd0 lib/vsprintf.c:2542
vsnprintf+0xf8a/0x1bd0 lib/vsprintf.c:2930
vprintk_store+0x3ae/0x1530 kernel/printk/printk.c:2279
vprintk_emit+0x307/0xcd0 kernel/printk/printk.c:2426
vprintk_default+0x3f/0x50 kernel/printk/printk.c:2465
vprintk+0x36/0x50 kernel/printk/printk_safe.c:82
_printk+0x17e/0x1b0 kernel/printk/printk.c:2475
ib_nl_process_good_ip_rsep drivers/infiniband/core/addr.c:128 [inline]
ib_nl_handle_ip_res_resp+0x963/0x9d0 drivers/infiniband/core/addr.c:141
rdma_nl_rcv_msg drivers/infiniband/core/netlink.c:-1 [inline]
rdma_nl_rcv_skb drivers/infiniband/core/netlink.c:239 [inline]
rdma_nl_rcv+0xefa/0x11c0 drivers/infiniband/core/netlink.c:259
netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline]
netlink_unicast+0xf04/0x12b0 net/netlink/af_netlink.c:1346
netlink_sendmsg+0x10b3/0x1250 net/netlink/af_netlink.c:1896
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg+0x333/0x3d0 net/socket.c:729
____sys_sendmsg+0x7e0/0xd80 net/socket.c:2617
___sys_sendmsg+0x271/0x3b0 net/socket.c:2671
__sys_sendmsg+0x1aa/0x300 net/socket.c:2703
__compat_sys_sendmsg net/compat.c:346 [inline]
__do_compat_sys_sendmsg net/compat.c:353 [inline]
__se_compat_sys_sendmsg net/compat.c:350 [inline]
__ia32_compat_sys_sendmsg+0xa4/0x100 net/compat.c:350
ia32_sys_call+0x3f6c/0x4310 arch/x86/include/generated/asm/syscalls_32.h:371
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
__do_fast_syscall_32+0xb0/0x150 arch/x86/entry/syscall_32.c:306
do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:3 |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Lemonsoft WordPress add on allows Cross-Site Scripting (XSS).This issue affects WordPress add on: 2025.7.1. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix buffer validation by including null terminator size in EA length
The smb2_set_ea function, which handles Extended Attributes (EA),
was performing buffer validation checks that incorrectly omitted the size
of the null terminating character (+1 byte) for EA Name.
This patch fixes the issue by explicitly adding '+ 1' to EaNameLength where
the null terminator is expected to be present in the buffer, ensuring
the validation accurately reflects the total required buffer size. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix io-uring list corruption for terminated non-committed requests
When a request is terminated before it has been committed, the request
is not removed from the queue's list. This leaves a dangling list entry
that leads to list corruption and use-after-free issues.
Remove the request from the queue's list for terminated non-committed
requests. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: NFSv4 file creation neglects setting ACL
An NFSv4 client that sets an ACL with a named principal during file
creation retrieves the ACL afterwards, and finds that it is only a
default ACL (based on the mode bits) and not the ACL that was
requested during file creation. This violates RFC 8881 section
6.4.1.3: "the ACL attribute is set as given".
The issue occurs in nfsd_create_setattr(), which calls
nfsd_attrs_valid() to determine whether to call nfsd_setattr().
However, nfsd_attrs_valid() checks only for iattr changes and
security labels, but not POSIX ACLs. When only an ACL is present,
the function returns false, nfsd_setattr() is skipped, and the
POSIX ACL is never applied to the inode.
Subsequently, when the client retrieves the ACL, the server finds
no POSIX ACL on the inode and returns one generated from the file's
mode bits rather than returning the originally-specified ACL. |
| In the Linux kernel, the following vulnerability has been resolved:
e1000: fix OOB in e1000_tbi_should_accept()
In e1000_tbi_should_accept() we read the last byte of the frame via
'data[length - 1]' to evaluate the TBI workaround. If the descriptor-
reported length is zero or larger than the actual RX buffer size, this
read goes out of bounds and can hit unrelated slab objects. The issue
is observed from the NAPI receive path (e1000_clean_rx_irq):
==================================================================
BUG: KASAN: slab-out-of-bounds in e1000_tbi_should_accept+0x610/0x790
Read of size 1 at addr ffff888014114e54 by task sshd/363
CPU: 0 PID: 363 Comm: sshd Not tainted 5.18.0-rc1 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0x5a/0x74
print_address_description+0x7b/0x440
print_report+0x101/0x200
kasan_report+0xc1/0xf0
e1000_tbi_should_accept+0x610/0x790
e1000_clean_rx_irq+0xa8c/0x1110
e1000_clean+0xde2/0x3c10
__napi_poll+0x98/0x380
net_rx_action+0x491/0xa20
__do_softirq+0x2c9/0x61d
do_softirq+0xd1/0x120
</IRQ>
<TASK>
__local_bh_enable_ip+0xfe/0x130
ip_finish_output2+0x7d5/0xb00
__ip_queue_xmit+0xe24/0x1ab0
__tcp_transmit_skb+0x1bcb/0x3340
tcp_write_xmit+0x175d/0x6bd0
__tcp_push_pending_frames+0x7b/0x280
tcp_sendmsg_locked+0x2e4f/0x32d0
tcp_sendmsg+0x24/0x40
sock_write_iter+0x322/0x430
vfs_write+0x56c/0xa60
ksys_write+0xd1/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f511b476b10
Code: 73 01 c3 48 8b 0d 88 d3 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d f9 2b 2c 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 31 c3 48 83 ec 08 e8 8e 9b 01 00 48 89 04 24
RSP: 002b:00007ffc9211d4e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000004024 RCX: 00007f511b476b10
RDX: 0000000000004024 RSI: 0000559a9385962c RDI: 0000000000000003
RBP: 0000559a9383a400 R08: fffffffffffffff0 R09: 0000000000004f00
R10: 0000000000000070 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffc9211d57f R14: 0000559a9347bde7 R15: 0000000000000003
</TASK>
Allocated by task 1:
__kasan_krealloc+0x131/0x1c0
krealloc+0x90/0xc0
add_sysfs_param+0xcb/0x8a0
kernel_add_sysfs_param+0x81/0xd4
param_sysfs_builtin+0x138/0x1a6
param_sysfs_init+0x57/0x5b
do_one_initcall+0x104/0x250
do_initcall_level+0x102/0x132
do_initcalls+0x46/0x74
kernel_init_freeable+0x28f/0x393
kernel_init+0x14/0x1a0
ret_from_fork+0x22/0x30
The buggy address belongs to the object at ffff888014114000
which belongs to the cache kmalloc-2k of size 2048
The buggy address is located 1620 bytes to the right of
2048-byte region [ffff888014114000, ffff888014114800]
The buggy address belongs to the physical page:
page:ffffea0000504400 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14110
head:ffffea0000504400 order:3 compound_mapcount:0 compound_pincount:0
flags: 0x100000000010200(slab|head|node=0|zone=1)
raw: 0100000000010200 0000000000000000 dead000000000001 ffff888013442000
raw: 0000000000000000 0000000000080008 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
==================================================================
This happens because the TBI check unconditionally dereferences the last
byte without validating the reported length first:
u8 last_byte = *(data + length - 1);
Fix by rejecting the frame early if the length is zero, or if it exceeds
adapter->rx_buffer_len. This preserves the TBI workaround semantics for
valid frames and prevents touching memory beyond the RX buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: fix off-by-one issues in iavf_config_rss_reg()
There are off-by-one bugs when configuring RSS hash key and lookup
table, causing out-of-bounds reads to memory [1] and out-of-bounds
writes to device registers.
Before commit 43a3d9ba34c9 ("i40evf: Allow PF driver to configure RSS"),
the loop upper bounds were:
i <= I40E_VFQF_{HKEY,HLUT}_MAX_INDEX
which is safe since the value is the last valid index.
That commit changed the bounds to:
i <= adapter->rss_{key,lut}_size / 4
where `rss_{key,lut}_size / 4` is the number of dwords, so the last
valid index is `(rss_{key,lut}_size / 4) - 1`. Therefore, using `<=`
accesses one element past the end.
Fix the issues by using `<` instead of `<=`, ensuring we do not exceed
the bounds.
[1] KASAN splat about rss_key_size off-by-one
BUG: KASAN: slab-out-of-bounds in iavf_config_rss+0x619/0x800
Read of size 4 at addr ffff888102c50134 by task kworker/u8:6/63
CPU: 0 UID: 0 PID: 63 Comm: kworker/u8:6 Not tainted 6.18.0-rc2-enjuk-tnguy-00378-g3005f5b77652-dirty #156 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Workqueue: iavf iavf_watchdog_task
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xb0
print_report+0x170/0x4f3
kasan_report+0xe1/0x1a0
iavf_config_rss+0x619/0x800
iavf_watchdog_task+0x2be7/0x3230
process_one_work+0x7fd/0x1420
worker_thread+0x4d1/0xd40
kthread+0x344/0x660
ret_from_fork+0x249/0x320
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 63:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
__kmalloc_noprof+0x246/0x6f0
iavf_watchdog_task+0x28fc/0x3230
process_one_work+0x7fd/0x1420
worker_thread+0x4d1/0xd40
kthread+0x344/0x660
ret_from_fork+0x249/0x320
ret_from_fork_asm+0x1a/0x30
The buggy address belongs to the object at ffff888102c50100
which belongs to the cache kmalloc-64 of size 64
The buggy address is located 0 bytes to the right of
allocated 52-byte region [ffff888102c50100, ffff888102c50134)
The buggy address belongs to the physical page:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x102c50
flags: 0x200000000000000(node=0|zone=2)
page_type: f5(slab)
raw: 0200000000000000 ffff8881000418c0 dead000000000122 0000000000000000
raw: 0000000000000000 0000000080200020 00000000f5000000 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888102c50000: 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc
ffff888102c50080: 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc
>ffff888102c50100: 00 00 00 00 00 00 04 fc fc fc fc fc fc fc fc fc
^
ffff888102c50180: 00 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc
ffff888102c50200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_mr: Fix use-after-free when updating multicast route stats
Cited commit added a dedicated mutex (instead of RTNL) to protect the
multicast route list, so that it will not change while the driver
periodically traverses it in order to update the kernel about multicast
route stats that were queried from the device.
One instance of list entry deletion (during route replace) was missed
and it can result in a use-after-free [1].
Fix by acquiring the mutex before deleting the entry from the list and
releasing it afterwards.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_mr_stats_update+0x4a5/0x540 drivers/net/ethernet/mellanox/mlxsw/spectrum_mr.c:1006 [mlxsw_spectrum]
Read of size 8 at addr ffff8881523c2fa8 by task kworker/2:5/22043
CPU: 2 UID: 0 PID: 22043 Comm: kworker/2:5 Not tainted 6.18.0-rc1-custom-g1a3d6d7cd014 #1 PREEMPT(full)
Hardware name: Mellanox Technologies Ltd. MSN2010/SA002610, BIOS 5.6.5 08/24/2017
Workqueue: mlxsw_core mlxsw_sp_mr_stats_update [mlxsw_spectrum]
Call Trace:
<TASK>
dump_stack_lvl+0xba/0x110
print_report+0x174/0x4f5
kasan_report+0xdf/0x110
mlxsw_sp_mr_stats_update+0x4a5/0x540 drivers/net/ethernet/mellanox/mlxsw/spectrum_mr.c:1006 [mlxsw_spectrum]
process_one_work+0x9cc/0x18e0
worker_thread+0x5df/0xe40
kthread+0x3b8/0x730
ret_from_fork+0x3e9/0x560
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 29933:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
mlxsw_sp_mr_route_add+0xd8/0x4770 [mlxsw_spectrum]
mlxsw_sp_router_fibmr_event_work+0x371/0xad0 drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:7965 [mlxsw_spectrum]
process_one_work+0x9cc/0x18e0
worker_thread+0x5df/0xe40
kthread+0x3b8/0x730
ret_from_fork+0x3e9/0x560
ret_from_fork_asm+0x1a/0x30
Freed by task 29933:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_save_free_info+0x3b/0x70
__kasan_slab_free+0x43/0x70
kfree+0x14e/0x700
mlxsw_sp_mr_route_add+0x2dea/0x4770 drivers/net/ethernet/mellanox/mlxsw/spectrum_mr.c:444 [mlxsw_spectrum]
mlxsw_sp_router_fibmr_event_work+0x371/0xad0 drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:7965 [mlxsw_spectrum]
process_one_work+0x9cc/0x18e0
worker_thread+0x5df/0xe40
kthread+0x3b8/0x730
ret_from_fork+0x3e9/0x560
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cm: Fix leaking the multicast GID table reference
If the CM ID is destroyed while the CM event for multicast creating is
still queued the cancel_work_sync() will prevent the work from running
which also prevents destroying the ah_attr. This leaks a refcount and
triggers a WARN:
GID entry ref leak for dev syz1 index 2 ref=573
WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 release_gid_table drivers/infiniband/core/cache.c:806 [inline]
WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 gid_table_release_one+0x284/0x3cc drivers/infiniband/core/cache.c:886
Destroy the ah_attr after canceling the work, it is safe to call this
twice. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/amd: Check event before enable to avoid GPF
On AMD machines cpuc->events[idx] can become NULL in a subtle race
condition with NMI->throttle->x86_pmu_stop().
Check event for NULL in amd_pmu_enable_all() before enable to avoid a GPF.
This appears to be an AMD only issue.
Syzkaller reported a GPF in amd_pmu_enable_all.
INFO: NMI handler (perf_event_nmi_handler) took too long to run: 13.143
msecs
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000034: 0000 PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x00000000000001a0-0x00000000000001a7]
CPU: 0 UID: 0 PID: 328415 Comm: repro_36674776 Not tainted 6.12.0-rc1-syzk
RIP: 0010:x86_pmu_enable_event (arch/x86/events/perf_event.h:1195
arch/x86/events/core.c:1430)
RSP: 0018:ffff888118009d60 EFLAGS: 00010012
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000034 RSI: 0000000000000000 RDI: 00000000000001a0
RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002
R13: ffff88811802a440 R14: ffff88811802a240 R15: ffff8881132d8601
FS: 00007f097dfaa700(0000) GS:ffff888118000000(0000) GS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200001c0 CR3: 0000000103d56000 CR4: 00000000000006f0
Call Trace:
<IRQ>
amd_pmu_enable_all (arch/x86/events/amd/core.c:760 (discriminator 2))
x86_pmu_enable (arch/x86/events/core.c:1360)
event_sched_out (kernel/events/core.c:1191 kernel/events/core.c:1186
kernel/events/core.c:2346)
__perf_remove_from_context (kernel/events/core.c:2435)
event_function (kernel/events/core.c:259)
remote_function (kernel/events/core.c:92 (discriminator 1)
kernel/events/core.c:72 (discriminator 1))
__flush_smp_call_function_queue (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207 ./include/trace/events/csd.h:64
kernel/smp.c:135 kernel/smp.c:540)
__sysvec_call_function_single (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207
./arch/x86/include/asm/trace/irq_vectors.h:99 arch/x86/kernel/smp.c:272)
sysvec_call_function_single (arch/x86/kernel/smp.c:266 (discriminator 47)
arch/x86/kernel/smp.c:266 (discriminator 47))
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
char: applicom: fix NULL pointer dereference in ac_ioctl
Discovered by Atuin - Automated Vulnerability Discovery Engine.
In ac_ioctl, the validation of IndexCard and the check for a valid
RamIO pointer are skipped when cmd is 6. However, the function
unconditionally executes readb(apbs[IndexCard].RamIO + VERS) at the
end.
If cmd is 6, IndexCard may reference a board that does not exist
(where RamIO is NULL), leading to a NULL pointer dereference.
Fix this by skipping the readb access when cmd is 6, as this
command is a global information query and does not target a specific
board context. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid updating zero-sized extent in extent cache
As syzbot reported:
F2FS-fs (loop0): __update_extent_tree_range: extent len is zero, type: 0, extent [0, 0, 0], age [0, 0]
------------[ cut here ]------------
kernel BUG at fs/f2fs/extent_cache.c:678!
Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 5336 Comm: syz.0.0 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:__update_extent_tree_range+0x13bc/0x1500 fs/f2fs/extent_cache.c:678
Call Trace:
<TASK>
f2fs_update_read_extent_cache_range+0x192/0x3e0 fs/f2fs/extent_cache.c:1085
f2fs_do_zero_range fs/f2fs/file.c:1657 [inline]
f2fs_zero_range+0x10c1/0x1580 fs/f2fs/file.c:1737
f2fs_fallocate+0x583/0x990 fs/f2fs/file.c:2030
vfs_fallocate+0x669/0x7e0 fs/open.c:342
ioctl_preallocate fs/ioctl.c:289 [inline]
file_ioctl+0x611/0x780 fs/ioctl.c:-1
do_vfs_ioctl+0xb33/0x1430 fs/ioctl.c:576
__do_sys_ioctl fs/ioctl.c:595 [inline]
__se_sys_ioctl+0x82/0x170 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f07bc58eec9
In error path of f2fs_zero_range(), it may add a zero-sized extent
into extent cache, it should be avoided. |