| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zlib: fix the folio leak on S390 hardware acceleration
[BUG]
After commit aa60fe12b4f4 ("btrfs: zlib: refactor S390x HW acceleration
buffer preparation"), we no longer release the folio of the page cache
of folio returned by btrfs_compress_filemap_get_folio() for S390
hardware acceleration path.
[CAUSE]
Before that commit, we call kumap_local() and folio_put() after handling
each folio.
Although the timing is not ideal (it release previous folio at the
beginning of the loop, and rely on some extra cleanup out of the loop),
it at least handles the folio release correctly.
Meanwhile the refactored code is easier to read, it lacks the call to
release the filemap folio.
[FIX]
Add the missing folio_put() for copy_data_into_buffer(). |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: fix race in nvmet_bio_done() leading to NULL pointer dereference
There is a race condition in nvmet_bio_done() that can cause a NULL
pointer dereference in blk_cgroup_bio_start():
1. nvmet_bio_done() is called when a bio completes
2. nvmet_req_complete() is called, which invokes req->ops->queue_response(req)
3. The queue_response callback can re-queue and re-submit the same request
4. The re-submission reuses the same inline_bio from nvmet_req
5. Meanwhile, nvmet_req_bio_put() (called after nvmet_req_complete)
invokes bio_uninit() for inline_bio, which sets bio->bi_blkg to NULL
6. The re-submitted bio enters submit_bio_noacct_nocheck()
7. blk_cgroup_bio_start() dereferences bio->bi_blkg, causing a crash:
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
RIP: 0010:blk_cgroup_bio_start+0x10/0xd0
Call Trace:
submit_bio_noacct_nocheck+0x44/0x250
nvmet_bdev_execute_rw+0x254/0x370 [nvmet]
process_one_work+0x193/0x3c0
worker_thread+0x281/0x3a0
Fix this by reordering nvmet_bio_done() to call nvmet_req_bio_put()
BEFORE nvmet_req_complete(). This ensures the bio is cleaned up before
the request can be re-submitted, preventing the race condition. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix memory leak in set_ssp_complete
Fix memory leak in set_ssp_complete() where mgmt_pending_cmd structures
are not freed after being removed from the pending list.
Commit 302a1f674c00 ("Bluetooth: MGMT: Fix possible UAFs") replaced
mgmt_pending_foreach() calls with individual command handling but missed
adding mgmt_pending_free() calls in both error and success paths of
set_ssp_complete(). Other completion functions like set_le_complete()
were fixed correctly in the same commit.
This causes a memory leak of the mgmt_pending_cmd structure and its
associated parameter data for each SSP command that completes.
Add the missing mgmt_pending_free(cmd) calls in both code paths to fix
the memory leak. Also fix the same issue in set_advertising_complete(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: correctly decode TTLM with default link map
TID-To-Link Mapping (TTLM) elements do not contain any link mapping
presence indicator if a default mapping is used and parsing needs to be
skipped.
Note that access points should not explicitly report an advertised TTLM
with a default mapping as that is the implied mapping if the element is
not included, this is even the case when switching back to the default
mapping. However, mac80211 would incorrectly parse the frame and would
also read one byte beyond the end of the element. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix segmentation of forwarding fraglist GRO
This patch enhances GSO segment handling by properly checking
the SKB_GSO_DODGY flag for frag_list GSO packets, addressing
low throughput issues observed when a station accesses IPv4
servers via hotspots with an IPv6-only upstream interface.
Specifically, it fixes a bug in GSO segmentation when forwarding
GRO packets containing a frag_list. The function skb_segment_list
cannot correctly process GRO skbs that have been converted by XLAT,
since XLAT only translates the header of the head skb. Consequently,
skbs in the frag_list may remain untranslated, resulting in protocol
inconsistencies and reduced throughput.
To address this, the patch explicitly sets the SKB_GSO_DODGY flag
for GSO packets in XLAT's IPv4/IPv6 protocol translation helpers
(bpf_skb_proto_4_to_6 and bpf_skb_proto_6_to_4). This marks GSO
packets as potentially modified after protocol translation. As a
result, GSO segmentation will avoid using skb_segment_list and
instead falls back to skb_segment for packets with the SKB_GSO_DODGY
flag. This ensures that only safe and fully translated frag_list
packets are processed by skb_segment_list, resolving protocol
inconsistencies and improving throughput when forwarding GRO packets
converted by XLAT. |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_receive_bulk_callback(): fix error message
Sinc commit 79a6d1bfe114 ("can: gs_usb: gs_usb_receive_bulk_callback():
unanchor URL on usb_submit_urb() error") a failing resubmit URB will print
an info message.
In the case of a short read where netdev has not yet been assigned,
initialize as NULL to avoid dereferencing an undefined value. Also report
the error value of the failed resubmit. |
| A vulnerability has been found in kalcaddle kodbox up to 1.64.05. The impacted element is the function run of the file plugins/fileThumb/lib/VideoResize.class.php of the component Media File Preview Plugin. Such manipulation of the argument localFile leads to os command injection. The attack can be executed remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| The EventPrime plugin for WordPress is vulnerable to unauthorized image file upload in all versions up to, and including, 4.2.8.4. This is due to the plugin registering the upload_file_media AJAX action as publicly accessible (nopriv-enabled) without implementing any authentication, authorization, or nonce verification despite a nonce being created. This makes it possible for unauthenticated attackers to upload image files to the WordPress uploads directory and create Media Library attachments via the ep_upload_file_media endpoint. |
| The Spam protection, Anti-Spam, FireWall by CleanTalk plugin for WordPress is vulnerable to unauthorized Arbitrary Plugin Installation due to an authorization bypass via reverse DNS (PTR record) spoofing on the 'checkWithoutToken' function in all versions up to, and including, 6.71. This makes it possible for unauthenticated attackers to install and activate arbitrary plugins which can be leveraged to achieve remote code execution if another vulnerable plugin is installed and activated. Note: This is only exploitable on sites with an invalid API key. |
| There is a misconfiguration vulnerability inside the Infotainment ECU manufactured by BOSCH. The vulnerability happens during the startup phase of a specific systemd service, and as a result, the following developer features will be activated: the disabled firewall and the launched SSH server.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| The system suffers from the absence of a kernel module signature verification. If an attacker can execute commands on behalf of root user (due to additional vulnerabilities), then he/she is also able to load custom kernel modules to the kernel space and execute code in the kernel context. Such a flaw can lead to taking control over the entire system.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| An issue in the code-runner.executorMap setting of Visual Studio Code Extensions Code Runner v0.12.2 allows attackers to execute arbitrary code when opening a crafted workspace. |
| SQL injection vulnerability (SQLi) in Clicldeu SaaS, specifically in the generation of reports, which occurs when a previously authenticated remote attacker executes a malicious payload in the URL generated after downloading the student's report card in the ‘Day-to-day’ section from the mobile application.
In the URL of the generated PDF, the session token used does not expire, so it remains valid for days after its generation, and unusual characters can be entered after the ‘id_alu’ parameter, resulting in two types of SQLi: boolean-based blind and time-based blind. Exploiting this vulnerability could allow an attacker to access confidential information in the database. |
| A Reflected Cross-site Scripting (XSS) vulnerability affecting ENOVIAvpm Web Access from ENOVIAvpm Version 1 Release 16 through ENOVIAvpm Version 1 Release 19 allows an attacker to execute arbitrary script code in user's browser session. |
| The Forminator Forms – Contact Form, Payment Form & Custom Form Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the form_name parameter in all versions up to, and including, 1.50.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level access, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. The plugin allows admins to give form management permissions to lower level users, which could make this exploitable by users such as subscribers. |
| The WowRevenue plugin for WordPress is vulnerable to unauthorized plugin installation due to a missing capability check in the 'Notice::install_activate_plugin' function in all versions up to, and including, 2.1.3. This makes it possible for authenticated attackers, with subscriber-level access and above, to install arbitrary plugins on the affected site's server which may make remote code execution possible. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix refcount leak in smb2_open()
When ksmbd_vfs_getattr() fails, the reference count of ksmbd_file
must be released. |
| In the Linux kernel, the following vulnerability has been resolved:
linkwatch: use __dev_put() in callers to prevent UAF
After linkwatch_do_dev() calls __dev_put() to release the linkwatch
reference, the device refcount may drop to 1. At this point,
netdev_run_todo() can proceed (since linkwatch_sync_dev() sees an
empty list and returns without blocking), wait for the refcount to
become 1 via netdev_wait_allrefs_any(), and then free the device
via kobject_put().
This creates a use-after-free when __linkwatch_run_queue() tries to
call netdev_unlock_ops() on the already-freed device.
Note that adding netdev_lock_ops()/netdev_unlock_ops() pair in
netdev_run_todo() before kobject_put() would not work, because
netdev_lock_ops() is conditional - it only locks when
netdev_need_ops_lock() returns true. If the device doesn't require
ops_lock, linkwatch won't hold any lock, and netdev_run_todo()
acquiring the lock won't provide synchronization.
Fix this by moving __dev_put() from linkwatch_do_dev() to its
callers. The device reference logically pairs with de-listing the
device, so it's reasonable for the caller that did the de-listing
to release it. This allows placing __dev_put() after all device
accesses are complete, preventing UAF.
The bug can be reproduced by adding mdelay(2000) after
linkwatch_do_dev() in __linkwatch_run_queue(), then running:
ip tuntap add mode tun name tun_test
ip link set tun_test up
ip link set tun_test carrier off
ip link set tun_test carrier on
sleep 0.5
ip tuntap del mode tun name tun_test
KASAN report:
==================================================================
BUG: KASAN: use-after-free in netdev_need_ops_lock include/net/netdev_lock.h:33 [inline]
BUG: KASAN: use-after-free in netdev_unlock_ops include/net/netdev_lock.h:47 [inline]
BUG: KASAN: use-after-free in __linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245
Read of size 8 at addr ffff88804de5c008 by task kworker/u32:10/8123
CPU: 0 UID: 0 PID: 8123 Comm: kworker/u32:10 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Workqueue: events_unbound linkwatch_event
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x100/0x190 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x156/0x4c9 mm/kasan/report.c:482
kasan_report+0xdf/0x1a0 mm/kasan/report.c:595
netdev_need_ops_lock include/net/netdev_lock.h:33 [inline]
netdev_unlock_ops include/net/netdev_lock.h:47 [inline]
__linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245
linkwatch_event+0x8f/0xc0 net/core/link_watch.c:304
process_one_work+0x9c2/0x1840 kernel/workqueue.c:3257
process_scheduled_works kernel/workqueue.c:3340 [inline]
worker_thread+0x5da/0xe40 kernel/workqueue.c:3421
kthread+0x3b3/0x730 kernel/kthread.c:463
ret_from_fork+0x754/0xaf0 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
</TASK>
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Don't clobber irqfd routing type when deassigning irqfd
When deassigning a KVM_IRQFD, don't clobber the irqfd's copy of the IRQ's
routing entry as doing so breaks kvm_arch_irq_bypass_del_producer() on x86
and arm64, which explicitly look for KVM_IRQ_ROUTING_MSI. Instead, to
handle a concurrent routing update, verify that the irqfd is still active
before consuming the routing information. As evidenced by the x86 and
arm64 bugs, and another bug in kvm_arch_update_irqfd_routing() (see below),
clobbering the entry type without notifying arch code is surprising and
error prone.
As a bonus, checking that the irqfd is active provides a convenient
location for documenting _why_ KVM must not consume the routing entry for
an irqfd that is in the process of being deassigned: once the irqfd is
deleted from the list (which happens *before* the eventfd is detached), it
will no longer receive updates via kvm_irq_routing_update(), and so KVM
could deliver an event using stale routing information (relative to
KVM_SET_GSI_ROUTING returning to userspace).
As an even better bonus, explicitly checking for the irqfd being active
fixes a similar bug to the one the clobbering is trying to prevent: if an
irqfd is deactivated, and then its routing is changed,
kvm_irq_routing_update() won't invoke kvm_arch_update_irqfd_routing()
(because the irqfd isn't in the list). And so if the irqfd is in bypass
mode, IRQs will continue to be posted using the old routing information.
As for kvm_arch_irq_bypass_del_producer(), clobbering the routing type
results in KVM incorrectly keeping the IRQ in bypass mode, which is
especially problematic on AMD as KVM tracks IRQs that are being posted to
a vCPU in a list whose lifetime is tied to the irqfd.
Without the help of KASAN to detect use-after-free, the most common
sympton on AMD is a NULL pointer deref in amd_iommu_update_ga() due to
the memory for irqfd structure being re-allocated and zeroed, resulting
in irqfd->irq_bypass_data being NULL when read by
avic_update_iommu_vcpu_affinity():
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 40cf2b9067 P4D 40cf2b9067 PUD 408362a067 PMD 0
Oops: Oops: 0000 [#1] SMP
CPU: 6 UID: 0 PID: 40383 Comm: vfio_irq_test
Tainted: G U W O 6.19.0-smp--5dddc257e6b2-irqfd #31 NONE
Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025
RIP: 0010:amd_iommu_update_ga+0x19/0xe0
Call Trace:
<TASK>
avic_update_iommu_vcpu_affinity+0x3d/0x90 [kvm_amd]
__avic_vcpu_load+0xf4/0x130 [kvm_amd]
kvm_arch_vcpu_load+0x89/0x210 [kvm]
vcpu_load+0x30/0x40 [kvm]
kvm_arch_vcpu_ioctl_run+0x45/0x620 [kvm]
kvm_vcpu_ioctl+0x571/0x6a0 [kvm]
__se_sys_ioctl+0x6d/0xb0
do_syscall_64+0x6f/0x9d0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x46893b
</TASK>
---[ end trace 0000000000000000 ]---
If AVIC is inhibited when the irfd is deassigned, the bug will manifest as
list corruption, e.g. on the next irqfd assignment.
list_add corruption. next->prev should be prev (ffff8d474d5cd588),
but was 0000000000000000. (next=ffff8d8658f86530).
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:31!
Oops: invalid opcode: 0000 [#1] SMP
CPU: 128 UID: 0 PID: 80818 Comm: vfio_irq_test
Tainted: G U W O 6.19.0-smp--f19dc4d680ba-irqfd #28 NONE
Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025
RIP: 0010:__list_add_valid_or_report+0x97/0xc0
Call Trace:
<TASK>
avic_pi_update_irte+0x28e/0x2b0 [kvm_amd]
kvm_pi_update_irte+0xbf/0x190 [kvm]
kvm_arch_irq_bypass_add_producer+0x72/0x90 [kvm]
irq_bypass_register_consumer+0xcd/0x170 [irqbypa
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra: Fix a memory leak in tegra_slink_probe()
In tegra_slink_probe(), when platform_get_irq() fails, it directly
returns from the function with an error code, which causes a memory leak.
Replace it with a goto label to ensure proper cleanup. |