| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| J2EE Misconfiguration: Data Transmission Without Encryption vulnerability in Apache NimBLE.
Improper handling of Pause Encryption procedure on Link Layer results in a previously encrypted connection being left in un-encrypted state allowing an eavesdropper to observe the remainder of the exchange.
This issue affects Apache NimBLE: through <= 1.8.0.
Users are recommended to upgrade to version 1.9.0, which fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport
[Why]
Potential out of bounds access in dml2_calculate_rq_and_dlg_params()
because the value of out_lowest_state_idx used as an index for FCLKChangeSupport
array can be greater than 1.
[How]
Currently dml2 core specifies identical values for all FCLKChangeSupport
elements. Always use index 0 in the condition to avoid out of bounds access. |
| Algo 8028 Control Panel version 3.3.3 contains a command injection vulnerability in the fm-data.lua endpoint that allows authenticated attackers to execute arbitrary commands. Attackers can exploit the insecure 'source' parameter by injecting commands that are executed with root privileges, enabling remote code execution through a crafted POST request. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Lemonsoft WordPress add on allows Cross-Site Scripting (XSS).This issue affects WordPress add on: 2025.7.1. |
| In the Linux kernel, the following vulnerability has been resolved:
e1000: fix OOB in e1000_tbi_should_accept()
In e1000_tbi_should_accept() we read the last byte of the frame via
'data[length - 1]' to evaluate the TBI workaround. If the descriptor-
reported length is zero or larger than the actual RX buffer size, this
read goes out of bounds and can hit unrelated slab objects. The issue
is observed from the NAPI receive path (e1000_clean_rx_irq):
==================================================================
BUG: KASAN: slab-out-of-bounds in e1000_tbi_should_accept+0x610/0x790
Read of size 1 at addr ffff888014114e54 by task sshd/363
CPU: 0 PID: 363 Comm: sshd Not tainted 5.18.0-rc1 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0x5a/0x74
print_address_description+0x7b/0x440
print_report+0x101/0x200
kasan_report+0xc1/0xf0
e1000_tbi_should_accept+0x610/0x790
e1000_clean_rx_irq+0xa8c/0x1110
e1000_clean+0xde2/0x3c10
__napi_poll+0x98/0x380
net_rx_action+0x491/0xa20
__do_softirq+0x2c9/0x61d
do_softirq+0xd1/0x120
</IRQ>
<TASK>
__local_bh_enable_ip+0xfe/0x130
ip_finish_output2+0x7d5/0xb00
__ip_queue_xmit+0xe24/0x1ab0
__tcp_transmit_skb+0x1bcb/0x3340
tcp_write_xmit+0x175d/0x6bd0
__tcp_push_pending_frames+0x7b/0x280
tcp_sendmsg_locked+0x2e4f/0x32d0
tcp_sendmsg+0x24/0x40
sock_write_iter+0x322/0x430
vfs_write+0x56c/0xa60
ksys_write+0xd1/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f511b476b10
Code: 73 01 c3 48 8b 0d 88 d3 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d f9 2b 2c 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 31 c3 48 83 ec 08 e8 8e 9b 01 00 48 89 04 24
RSP: 002b:00007ffc9211d4e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000004024 RCX: 00007f511b476b10
RDX: 0000000000004024 RSI: 0000559a9385962c RDI: 0000000000000003
RBP: 0000559a9383a400 R08: fffffffffffffff0 R09: 0000000000004f00
R10: 0000000000000070 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffc9211d57f R14: 0000559a9347bde7 R15: 0000000000000003
</TASK>
Allocated by task 1:
__kasan_krealloc+0x131/0x1c0
krealloc+0x90/0xc0
add_sysfs_param+0xcb/0x8a0
kernel_add_sysfs_param+0x81/0xd4
param_sysfs_builtin+0x138/0x1a6
param_sysfs_init+0x57/0x5b
do_one_initcall+0x104/0x250
do_initcall_level+0x102/0x132
do_initcalls+0x46/0x74
kernel_init_freeable+0x28f/0x393
kernel_init+0x14/0x1a0
ret_from_fork+0x22/0x30
The buggy address belongs to the object at ffff888014114000
which belongs to the cache kmalloc-2k of size 2048
The buggy address is located 1620 bytes to the right of
2048-byte region [ffff888014114000, ffff888014114800]
The buggy address belongs to the physical page:
page:ffffea0000504400 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14110
head:ffffea0000504400 order:3 compound_mapcount:0 compound_pincount:0
flags: 0x100000000010200(slab|head|node=0|zone=1)
raw: 0100000000010200 0000000000000000 dead000000000001 ffff888013442000
raw: 0000000000000000 0000000000080008 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
==================================================================
This happens because the TBI check unconditionally dereferences the last
byte without validating the reported length first:
u8 last_byte = *(data + length - 1);
Fix by rejecting the frame early if the length is zero, or if it exceeds
adapter->rx_buffer_len. This preserves the TBI workaround semantics for
valid frames and prevents touching memory beyond the RX buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: fix off-by-one issues in iavf_config_rss_reg()
There are off-by-one bugs when configuring RSS hash key and lookup
table, causing out-of-bounds reads to memory [1] and out-of-bounds
writes to device registers.
Before commit 43a3d9ba34c9 ("i40evf: Allow PF driver to configure RSS"),
the loop upper bounds were:
i <= I40E_VFQF_{HKEY,HLUT}_MAX_INDEX
which is safe since the value is the last valid index.
That commit changed the bounds to:
i <= adapter->rss_{key,lut}_size / 4
where `rss_{key,lut}_size / 4` is the number of dwords, so the last
valid index is `(rss_{key,lut}_size / 4) - 1`. Therefore, using `<=`
accesses one element past the end.
Fix the issues by using `<` instead of `<=`, ensuring we do not exceed
the bounds.
[1] KASAN splat about rss_key_size off-by-one
BUG: KASAN: slab-out-of-bounds in iavf_config_rss+0x619/0x800
Read of size 4 at addr ffff888102c50134 by task kworker/u8:6/63
CPU: 0 UID: 0 PID: 63 Comm: kworker/u8:6 Not tainted 6.18.0-rc2-enjuk-tnguy-00378-g3005f5b77652-dirty #156 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Workqueue: iavf iavf_watchdog_task
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xb0
print_report+0x170/0x4f3
kasan_report+0xe1/0x1a0
iavf_config_rss+0x619/0x800
iavf_watchdog_task+0x2be7/0x3230
process_one_work+0x7fd/0x1420
worker_thread+0x4d1/0xd40
kthread+0x344/0x660
ret_from_fork+0x249/0x320
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 63:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
__kmalloc_noprof+0x246/0x6f0
iavf_watchdog_task+0x28fc/0x3230
process_one_work+0x7fd/0x1420
worker_thread+0x4d1/0xd40
kthread+0x344/0x660
ret_from_fork+0x249/0x320
ret_from_fork_asm+0x1a/0x30
The buggy address belongs to the object at ffff888102c50100
which belongs to the cache kmalloc-64 of size 64
The buggy address is located 0 bytes to the right of
allocated 52-byte region [ffff888102c50100, ffff888102c50134)
The buggy address belongs to the physical page:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x102c50
flags: 0x200000000000000(node=0|zone=2)
page_type: f5(slab)
raw: 0200000000000000 ffff8881000418c0 dead000000000122 0000000000000000
raw: 0000000000000000 0000000080200020 00000000f5000000 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888102c50000: 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc
ffff888102c50080: 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc
>ffff888102c50100: 00 00 00 00 00 00 04 fc fc fc fc fc fc fc fc fc
^
ffff888102c50180: 00 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc
ffff888102c50200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cm: Fix leaking the multicast GID table reference
If the CM ID is destroyed while the CM event for multicast creating is
still queued the cancel_work_sync() will prevent the work from running
which also prevents destroying the ah_attr. This leaks a refcount and
triggers a WARN:
GID entry ref leak for dev syz1 index 2 ref=573
WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 release_gid_table drivers/infiniband/core/cache.c:806 [inline]
WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 gid_table_release_one+0x284/0x3cc drivers/infiniband/core/cache.c:886
Destroy the ah_attr after canceling the work, it is safe to call this
twice. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: Cap the number of PCR banks
tpm2_get_pcr_allocation() does not cap any upper limit for the number of
banks. Cap the limit to eight banks so that out of bounds values coming
from external I/O cause on only limited harm. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: fix use-after-free on probe deferral
The driver is dropping the references taken to the larb devices during
probe after successful lookup as well as on errors. This can
potentially lead to a use-after-free in case a larb device has not yet
been bound to its driver so that the iommu driver probe defers.
Fix this by keeping the references as expected while the iommu driver is
bound. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: ets: Always remove class from active list before deleting in ets_qdisc_change
zdi-disclosures@trendmicro.com says:
The vulnerability is a race condition between `ets_qdisc_dequeue` and
`ets_qdisc_change`. It leads to UAF on `struct Qdisc` object.
Attacker requires the capability to create new user and network namespace
in order to trigger the bug.
See my additional commentary at the end of the analysis.
Analysis:
static int ets_qdisc_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
...
// (1) this lock is preventing .change handler (`ets_qdisc_change`)
//to race with .dequeue handler (`ets_qdisc_dequeue`)
sch_tree_lock(sch);
for (i = nbands; i < oldbands; i++) {
if (i >= q->nstrict && q->classes[i].qdisc->q.qlen)
list_del_init(&q->classes[i].alist);
qdisc_purge_queue(q->classes[i].qdisc);
}
WRITE_ONCE(q->nbands, nbands);
for (i = nstrict; i < q->nstrict; i++) {
if (q->classes[i].qdisc->q.qlen) {
// (2) the class is added to the q->active
list_add_tail(&q->classes[i].alist, &q->active);
q->classes[i].deficit = quanta[i];
}
}
WRITE_ONCE(q->nstrict, nstrict);
memcpy(q->prio2band, priomap, sizeof(priomap));
for (i = 0; i < q->nbands; i++)
WRITE_ONCE(q->classes[i].quantum, quanta[i]);
for (i = oldbands; i < q->nbands; i++) {
q->classes[i].qdisc = queues[i];
if (q->classes[i].qdisc != &noop_qdisc)
qdisc_hash_add(q->classes[i].qdisc, true);
}
// (3) the qdisc is unlocked, now dequeue can be called in parallel
// to the rest of .change handler
sch_tree_unlock(sch);
ets_offload_change(sch);
for (i = q->nbands; i < oldbands; i++) {
// (4) we're reducing the refcount for our class's qdisc and
// freeing it
qdisc_put(q->classes[i].qdisc);
// (5) If we call .dequeue between (4) and (5), we will have
// a strong UAF and we can control RIP
q->classes[i].qdisc = NULL;
WRITE_ONCE(q->classes[i].quantum, 0);
q->classes[i].deficit = 0;
gnet_stats_basic_sync_init(&q->classes[i].bstats);
memset(&q->classes[i].qstats, 0, sizeof(q->classes[i].qstats));
}
return 0;
}
Comment:
This happens because some of the classes have their qdiscs assigned to
NULL, but remain in the active list. This commit fixes this issue by always
removing the class from the active list before deleting and freeing its
associated qdisc
Reproducer Steps
(trimmed version of what was sent by zdi-disclosures@trendmicro.com)
```
DEV="${DEV:-lo}"
ROOT_HANDLE="${ROOT_HANDLE:-1:}"
BAND2_HANDLE="${BAND2_HANDLE:-20:}" # child under 1:2
PING_BYTES="${PING_BYTES:-48}"
PING_COUNT="${PING_COUNT:-200000}"
PING_DST="${PING_DST:-127.0.0.1}"
SLOW_TBF_RATE="${SLOW_TBF_RATE:-8bit}"
SLOW_TBF_BURST="${SLOW_TBF_BURST:-100b}"
SLOW_TBF_LAT="${SLOW_TBF_LAT:-1s}"
cleanup() {
tc qdisc del dev "$DEV" root 2>/dev/null
}
trap cleanup EXIT
ip link set "$DEV" up
tc qdisc del dev "$DEV" root 2>/dev/null || true
tc qdisc add dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2
tc qdisc add dev "$DEV" parent 1:2 handle "$BAND2_HANDLE" \
tbf rate "$SLOW_TBF_RATE" burst "$SLOW_TBF_BURST" latency "$SLOW_TBF_LAT"
tc filter add dev "$DEV" parent 1: protocol all prio 1 u32 match u32 0 0 flowid 1:2
tc -s qdisc ls dev $DEV
ping -I "$DEV" -f -c "$PING_COUNT" -s "$PING_BYTES" -W 0.001 "$PING_DST" \
>/dev/null 2>&1 &
tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 0
tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2
tc -s qdisc ls dev $DEV
tc qdisc del dev "$DEV" parent
---truncated--- |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the mac2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the security_5g parameter of the sub_4CA50 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| phpgurukul News Portal Project V4.1 is vulnerable to SQL Injection in check_availablity.php. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb: dtv5100: fix out-of-bounds in dtv5100_i2c_msg()
rlen value is a user-controlled value, but dtv5100_i2c_msg() does not
check the size of the rlen value. Therefore, if it is set to a value
larger than sizeof(st->data), an out-of-bounds vuln occurs for st->data.
Therefore, we need to add proper range checking to prevent this vuln. |
| OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fallback earlier on simult connection
Syzkaller reports a simult-connect race leading to inconsistent fallback
status:
WARNING: CPU: 3 PID: 33 at net/mptcp/subflow.c:1515 subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515
Modules linked in:
CPU: 3 UID: 0 PID: 33 Comm: ksoftirqd/3 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515
Code: 89 ee e8 78 61 3c f6 40 84 ed 75 21 e8 8e 66 3c f6 44 89 fe bf 07 00 00 00 e8 c1 61 3c f6 41 83 ff 07 74 09 e8 76 66 3c f6 90 <0f> 0b 90 e8 6d 66 3c f6 48 89 df e8 e5 ad ff ff 31 ff 89 c5 89 c6
RSP: 0018:ffffc900006cf338 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888031acd100 RCX: ffffffff8b7f2abf
RDX: ffff88801e6ea440 RSI: ffffffff8b7f2aca RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000007
R10: 0000000000000004 R11: 0000000000002c10 R12: ffff88802ba69900
R13: 1ffff920000d9e67 R14: ffff888046f81800 R15: 0000000000000004
FS: 0000000000000000(0000) GS:ffff8880d69bc000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000560fc0ca1670 CR3: 0000000032c3a000 CR4: 0000000000352ef0
Call Trace:
<TASK>
tcp_data_queue+0x13b0/0x4f90 net/ipv4/tcp_input.c:5197
tcp_rcv_state_process+0xfdf/0x4ec0 net/ipv4/tcp_input.c:6922
tcp_v6_do_rcv+0x492/0x1740 net/ipv6/tcp_ipv6.c:1672
tcp_v6_rcv+0x2976/0x41e0 net/ipv6/tcp_ipv6.c:1918
ip6_protocol_deliver_rcu+0x188/0x1520 net/ipv6/ip6_input.c:438
ip6_input_finish+0x1e4/0x4b0 net/ipv6/ip6_input.c:489
NF_HOOK include/linux/netfilter.h:318 [inline]
NF_HOOK include/linux/netfilter.h:312 [inline]
ip6_input+0x105/0x2f0 net/ipv6/ip6_input.c:500
dst_input include/net/dst.h:471 [inline]
ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline]
NF_HOOK include/linux/netfilter.h:318 [inline]
NF_HOOK include/linux/netfilter.h:312 [inline]
ipv6_rcv+0x264/0x650 net/ipv6/ip6_input.c:311
__netif_receive_skb_one_core+0x12d/0x1e0 net/core/dev.c:5979
__netif_receive_skb+0x1d/0x160 net/core/dev.c:6092
process_backlog+0x442/0x15e0 net/core/dev.c:6444
__napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7494
napi_poll net/core/dev.c:7557 [inline]
net_rx_action+0xa9f/0xfe0 net/core/dev.c:7684
handle_softirqs+0x216/0x8e0 kernel/softirq.c:579
run_ksoftirqd kernel/softirq.c:968 [inline]
run_ksoftirqd+0x3a/0x60 kernel/softirq.c:960
smpboot_thread_fn+0x3f7/0xae0 kernel/smpboot.c:160
kthread+0x3c2/0x780 kernel/kthread.c:463
ret_from_fork+0x5d7/0x6f0 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
The TCP subflow can process the simult-connect syn-ack packet after
transitioning to TCP_FIN1 state, bypassing the MPTCP fallback check,
as the sk_state_change() callback is not invoked for * -> FIN_WAIT1
transitions.
That will move the msk socket to an inconsistent status and the next
incoming data will hit the reported splat.
Close the race moving the simult-fallback check at the earliest possible
stage - that is at syn-ack generation time.
About the fixes tags: [2] was supposed to also fix this issue introduced
by [3]. [1] is required as a dependence: it was not explicitly marked as
a fix, but it is one and it has already been backported before [3]. In
other words, this commit should be backported up to [3], including [2]
and [1] if that's not already there. |
| Zohocorp ManageEngine PAM360 versions before 8202; Password Manager Pro versions before 13221; Access Manager Plus versions prior to 4401 are vulnerable to an authorization issue in the initiate remote session functionality. |
| Zohocorp ManageEngine ADSelfService Plus versions before 6519 are vulnerable to Authentication Bypass due to improper filter configurations. |
| Zohocorp ManageEngine ADManager Plus versions below 7230 are vulnerable to Path Traversal in the User Management module |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't log conflicting inode if it's a dir moved in the current transaction
We can't log a conflicting inode if it's a directory and it was moved
from one parent directory to another parent directory in the current
transaction, as this can result an attempt to have a directory with
two hard links during log replay, one for the old parent directory and
another for the new parent directory.
The following scenario triggers that issue:
1) We have directories "dir1" and "dir2" created in a past transaction.
Directory "dir1" has inode A as its parent directory;
2) We move "dir1" to some other directory;
3) We create a file with the name "dir1" in directory inode A;
4) We fsync the new file. This results in logging the inode of the new file
and the inode for the directory "dir1" that was previously moved in the
current transaction. So the log tree has the INODE_REF item for the
new location of "dir1";
5) We move the new file to some other directory. This results in updating
the log tree to included the new INODE_REF for the new location of the
file and removes the INODE_REF for the old location. This happens
during the rename when we call btrfs_log_new_name();
6) We fsync the file, and that persists the log tree changes done in the
previous step (btrfs_log_new_name() only updates the log tree in
memory);
7) We have a power failure;
8) Next time the fs is mounted, log replay happens and when processing
the inode for directory "dir1" we find a new INODE_REF and add that
link, but we don't remove the old link of the inode since we have
not logged the old parent directory of the directory inode "dir1".
As a result after log replay finishes when we trigger writeback of the
subvolume tree's extent buffers, the tree check will detect that we have
a directory a hard link count of 2 and we get a mount failure.
The errors and stack traces reported in dmesg/syslog are like this:
[ 3845.729764] BTRFS info (device dm-0): start tree-log replay
[ 3845.730304] page: refcount:3 mapcount:0 mapping:000000005c8a3027 index:0x1d00 pfn:0x11510c
[ 3845.731236] memcg:ffff9264c02f4e00
[ 3845.731751] aops:btree_aops [btrfs] ino:1
[ 3845.732300] flags: 0x17fffc00000400a(uptodate|private|writeback|node=0|zone=2|lastcpupid=0x1ffff)
[ 3845.733346] raw: 017fffc00000400a 0000000000000000 dead000000000122 ffff9264d978aea8
[ 3845.734265] raw: 0000000000001d00 ffff92650e6d4738 00000003ffffffff ffff9264c02f4e00
[ 3845.735305] page dumped because: eb page dump
[ 3845.735981] BTRFS critical (device dm-0): corrupt leaf: root=5 block=30408704 slot=6 ino=257, invalid nlink: has 2 expect no more than 1 for dir
[ 3845.737786] BTRFS info (device dm-0): leaf 30408704 gen 10 total ptrs 17 free space 14881 owner 5
[ 3845.737789] BTRFS info (device dm-0): refs 4 lock_owner 0 current 30701
[ 3845.737792] item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160
[ 3845.737794] inode generation 3 transid 9 size 16 nbytes 16384
[ 3845.737795] block group 0 mode 40755 links 1 uid 0 gid 0
[ 3845.737797] rdev 0 sequence 2 flags 0x0
[ 3845.737798] atime 1764259517.0
[ 3845.737800] ctime 1764259517.572889464
[ 3845.737801] mtime 1764259517.572889464
[ 3845.737802] otime 1764259517.0
[ 3845.737803] item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12
[ 3845.737805] index 0 name_len 2
[ 3845.737807] item 2 key (256 DIR_ITEM 2363071922) itemoff 16077 itemsize 34
[ 3845.737808] location key (257 1 0) type 2
[ 3845.737810] transid 9 data_len 0 name_len 4
[ 3845.737811] item 3 key (256 DIR_ITEM 2676584006) itemoff 16043 itemsize 34
[ 3845.737813] location key (258 1 0) type 2
[ 3845.737814] transid 9 data_len 0 name_len 4
[ 3845.737815] item 4 key (256 DIR_INDEX 2) itemoff 16009 itemsize 34
[ 3845.737816] location key (257 1 0) type 2
[
---truncated--- |