| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| httparty is an API tool. In versions 0.23.2 and prior, httparty is vulnerable to SSRF. This issue can pose a risk of leaking API keys, and it can also allow third parties to issue requests to internal servers. This issue has been patched via commit 0529bcd. |
| MSP360 Free Backup Link Following Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of MSP360 Free Backup. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. User interaction on the part of an administrator is needed additionally.
The specific flaw exists within the restore functionality. By creating a junction, an attacker can abuse the service to create arbitrary files. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27245. |
| Coolify is an open-source and self-hostable tool for managing servers, applications, and databases. Prior to version 4.0.0-beta.451, an authenticated command injection vulnerability in the Database Import functionality allows users with application/service management permissions to execute arbitrary commands as root on managed servers. Database names used in import operations are passed directly to shell commands without sanitization, enabling full remote code execution. Version 4.0.0-beta.451 fixes the issue. |
| Coolify is an open-source and self-hostable tool for managing servers, applications, and databases. Prior to version 4.0.0-beta.451, an authenticated command injection vulnerability in PostgreSQL Init Script Filename handling allows users with application/service management permissions to execute arbitrary commands as root on managed servers. PostgreSQL initialization script filenames are passed to shell commands without proper validation, enabling full remote code execution. Version 4.0.0-beta.451 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ping: Fix potentail NULL deref for /proc/net/icmp.
After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid
of rwlock"), we use RCU for ping sockets, but we should use spinlock
for /proc/net/icmp to avoid a potential NULL deref mentioned in
the previous patch.
Let's go back to using spinlock there.
Note we can convert ping sockets to use hlist instead of hlist_nulls
because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: ocb: don't leave if not joined
If there's no OCB state, don't ask the driver/mac80211 to
leave, since that's just confusing. Since set/clear the
chandef state, that's a simple check. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: of: fix double-free on unregistration
Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal
zone parameters structure"), thermal_zone_device_register() allocates
a copy of the tzp argument and frees it when unregistering, so
thermal_of_zone_register() now ends up leaking its original tzp and
double-freeing the tzp copy. Fix this by locating tzp on stack instead. |
| Soda PDF Desktop Word File Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the handling of Word files. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27496. |
| Hugging Face Transformers GLM4 Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of weights. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28309. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27680. |
| FluidSynth is a software synthesizer based on the SoundFont 2 specifications. From versions 2.5.0 to before 2.5.2, a race condition during unloading of a DLS file can trigger a heap-based use-after-free. A concurrently running thread may be pending to unload a DLS file, leading to use of freed memory, if the synthesizer is being concurrently destroyed, or samples of the (unloaded) DLS file are concurrently used to synthesize audio. This issue has been patched in version 2.5.2. The problem will not occur, when explicitly unloading a DLS file (before synth destruction), provided that at the time of unloading, no samples of the respective file are used by active voices. The problem will not occur in versions of FluidSynth that have been compiled without native DLS support. |
| LangChain is a framework for building agents and LLM-powered applications. Prior to versions 0.3.81 and 1.2.5, a serialization injection vulnerability exists in LangChain's dumps() and dumpd() functions. The functions do not escape dictionaries with 'lc' keys when serializing free-form dictionaries. The 'lc' key is used internally by LangChain to mark serialized objects. When user-controlled data contains this key structure, it is treated as a legitimate LangChain object during deserialization rather than plain user data. This issue has been patched in versions 0.3.81 and 1.2.5. |
| 5ire is a cross-platform desktop artificial intelligence assistant and model context protocol client. In versions 0.15.2 and prior, an RCE vulnerability exists in useMarkdown.ts, where the markdown-it-mermaid plugin is initialized with securityLevel: 'loose'. This configuration explicitly permits the rendering of HTML tags within Mermaid diagram nodes. This issue has not been patched at time of publication. |
| Academy Software Foundation OpenEXR EXR File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Academy Software Foundation OpenEXR. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of EXR files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27948. |
| Hugging Face Transformers X-CLIP Checkpoint Conversion Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of checkpoints. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28308. |
| Conduit is a chat server powered by Matrix. A vulnerability that affects a number of Conduit-derived homeservers allows a remote, unauthenticated attacker to force the target server to cryptographically sign arbitrary membership events. Affected products include Conduit prior to version 0.10.10, continuwuity prior to version 0.5.0, Grapevine prior to commit `9a50c244`, and tuwunel prior to version 1.4.8. The flaw exists because the server fails to validate the origin of a signing request, provided the event's state_key is a valid user ID belonging to the target server. Attackers can forge "leave" events for any user on the target server. This forcibly removes users (including admins and bots) from rooms. This allows denial of service and/or the removal of technical protections for a room (including policy servers, if all users on the policy server are removed). Attackers can forge "invite" events from a victim user to themselves, provided they have an account on a server where there is an account that has the power level to send invites. This allows the attacker to join private or invite-only rooms accessible by the victim, exposing confidential conversation history and room state. Attackers can forge "ban" events from a victim user to any user below the victim user's power level, provided the victim has the power level to issue bans AND the target of the ban resides on the same server as the victim. This allows the attacker to ban anyone in a room who is on the same server as the vulnerable one, however cannot exploit this to ban users on other servers or the victim themself. Conduit fixes the issue in version 0.10.10. continuwuity fixes the issue in commits `7fa4fa98` and `b2bead67`, released in 0.5.0. tuwunel fixes the issue in commit `dc9314de1f8a6e040c5aa331fe52efbe62e6a2c3`, released in 1.4.8. Grapevine fixes the issue in commit `9a50c2448abba6e2b7d79c64243bb438b351616c`. As a workaround, block access to the `PUT /_matrix/federation/v2/invite/{roomId}/{eventId}` endpoint using your reverse proxy. |
| In the Linux kernel, the following vulnerability has been resolved:
mrp: introduce active flags to prevent UAF when applicant uninit
The caller of del_timer_sync must prevent restarting of the timer, If
we have no this synchronization, there is a small probability that the
cancellation will not be successful.
And syzbot report the fellowing crash:
==================================================================
BUG: KASAN: use-after-free in hlist_add_head include/linux/list.h:929 [inline]
BUG: KASAN: use-after-free in enqueue_timer+0x18/0xa4 kernel/time/timer.c:605
Write at addr f9ff000024df6058 by task syz-fuzzer/2256
Pointer tag: [f9], memory tag: [fe]
CPU: 1 PID: 2256 Comm: syz-fuzzer Not tainted 6.1.0-rc5-syzkaller-00008-
ge01d50cbd6ee #0
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace.part.0+0xe0/0xf0 arch/arm64/kernel/stacktrace.c:156
dump_backtrace arch/arm64/kernel/stacktrace.c:162 [inline]
show_stack+0x18/0x40 arch/arm64/kernel/stacktrace.c:163
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x68/0x84 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:284 [inline]
print_report+0x1a8/0x4a0 mm/kasan/report.c:395
kasan_report+0x94/0xb4 mm/kasan/report.c:495
__do_kernel_fault+0x164/0x1e0 arch/arm64/mm/fault.c:320
do_bad_area arch/arm64/mm/fault.c:473 [inline]
do_tag_check_fault+0x78/0x8c arch/arm64/mm/fault.c:749
do_mem_abort+0x44/0x94 arch/arm64/mm/fault.c:825
el1_abort+0x40/0x60 arch/arm64/kernel/entry-common.c:367
el1h_64_sync_handler+0xd8/0xe4 arch/arm64/kernel/entry-common.c:427
el1h_64_sync+0x64/0x68 arch/arm64/kernel/entry.S:576
hlist_add_head include/linux/list.h:929 [inline]
enqueue_timer+0x18/0xa4 kernel/time/timer.c:605
mod_timer+0x14/0x20 kernel/time/timer.c:1161
mrp_periodic_timer_arm net/802/mrp.c:614 [inline]
mrp_periodic_timer+0xa0/0xc0 net/802/mrp.c:627
call_timer_fn.constprop.0+0x24/0x80 kernel/time/timer.c:1474
expire_timers+0x98/0xc4 kernel/time/timer.c:1519
To fix it, we can introduce a new active flags to make sure the timer will
not restart. |
| In the Linux kernel, the following vulnerability has been resolved:
selinux: enable use of both GFP_KERNEL and GFP_ATOMIC in convert_context()
The following warning was triggered on a hardware environment:
SELinux: Converting 162 SID table entries...
BUG: sleeping function called from invalid context at
__might_sleep+0x60/0x74 0x0
in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 5943, name: tar
CPU: 7 PID: 5943 Comm: tar Tainted: P O 5.10.0 #1
Call trace:
dump_backtrace+0x0/0x1c8
show_stack+0x18/0x28
dump_stack+0xe8/0x15c
___might_sleep+0x168/0x17c
__might_sleep+0x60/0x74
__kmalloc_track_caller+0xa0/0x7dc
kstrdup+0x54/0xac
convert_context+0x48/0x2e4
sidtab_context_to_sid+0x1c4/0x36c
security_context_to_sid_core+0x168/0x238
security_context_to_sid_default+0x14/0x24
inode_doinit_use_xattr+0x164/0x1e4
inode_doinit_with_dentry+0x1c0/0x488
selinux_d_instantiate+0x20/0x34
security_d_instantiate+0x70/0xbc
d_splice_alias+0x4c/0x3c0
ext4_lookup+0x1d8/0x200 [ext4]
__lookup_slow+0x12c/0x1e4
walk_component+0x100/0x200
path_lookupat+0x88/0x118
filename_lookup+0x98/0x130
user_path_at_empty+0x48/0x60
vfs_statx+0x84/0x140
vfs_fstatat+0x20/0x30
__se_sys_newfstatat+0x30/0x74
__arm64_sys_newfstatat+0x1c/0x2c
el0_svc_common.constprop.0+0x100/0x184
do_el0_svc+0x1c/0x2c
el0_svc+0x20/0x34
el0_sync_handler+0x80/0x17c
el0_sync+0x13c/0x140
SELinux: Context system_u:object_r:pssp_rsyslog_log_t:s0:c0 is
not valid (left unmapped).
It was found that within a critical section of spin_lock_irqsave in
sidtab_context_to_sid(), convert_context() (hooked by
sidtab_convert_params.func) might cause the process to sleep via
allocating memory with GFP_KERNEL, which is problematic.
As Ondrej pointed out [1], convert_context()/sidtab_convert_params.func
has another caller sidtab_convert_tree(), which is okay with GFP_KERNEL.
Therefore, fix this problem by adding a gfp_t argument for
convert_context()/sidtab_convert_params.func and pass GFP_KERNEL/_ATOMIC
properly in individual callers.
[PM: wrap long BUG() output lines, tweak subject line] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host
SDIO may need addtional 511 bytes to align bus operation. If the tailroom
of this skb is not big enough, we would access invalid memory region.
For low level operation, increase skb size to keep valid memory access in
SDIO host.
Error message:
[69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0
[69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451
[69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1
[69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300]
[69.951] Call Trace:
[69.951] <TASK>
[69.952] dump_stack_lvl+0x49/0x63
[69.952] print_report+0x171/0x4a8
[69.952] kasan_report+0xb4/0x130
[69.952] kasan_check_range+0x149/0x1e0
[69.952] memcpy+0x24/0x70
[69.952] sg_copy_buffer+0xe9/0x1a0
[69.952] sg_copy_to_buffer+0x12/0x20
[69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300]
[69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300]
[69.952] process_one_work+0x7ee/0x1320
[69.952] worker_thread+0x53c/0x1240
[69.952] kthread+0x2b8/0x370
[69.952] ret_from_fork+0x1f/0x30
[69.952] </TASK>
[69.952] Allocated by task 854:
[69.952] kasan_save_stack+0x26/0x50
[69.952] kasan_set_track+0x25/0x30
[69.952] kasan_save_alloc_info+0x1b/0x30
[69.952] __kasan_kmalloc+0x87/0xa0
[69.952] __kmalloc_node_track_caller+0x63/0x150
[69.952] kmalloc_reserve+0x31/0xd0
[69.952] __alloc_skb+0xfc/0x2b0
[69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76]
[69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76]
[69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76]
[69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib]
[69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib]
[69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common]
[69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s]
[69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common]
[69.953] process_one_work+0x7ee/0x1320
[69.953] worker_thread+0x53c/0x1240
[69.953] kthread+0x2b8/0x370
[69.953] ret_from_fork+0x1f/0x30
[69.953] The buggy address belongs to the object at ffff88811c9ce800
which belongs to the cache kmalloc-2k of size 2048
[69.953] The buggy address is located 0 bytes to the right of
2048-byte region [ffff88811c9ce800, ffff88811c9cf000)
[69.953] Memory state around the buggy address:
[69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ^
[69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa_sim: fix possible memory leak in vdpasim_net_init() and vdpasim_blk_init()
Inject fault while probing module, if device_register() fails in
vdpasim_net_init() or vdpasim_blk_init(), but the refcount of kobject is
not decreased to 0, the name allocated in dev_set_name() is leaked.
Fix this by calling put_device(), so that name can be freed in
callback function kobject_cleanup().
(vdpa_sim_net)
unreferenced object 0xffff88807eebc370 (size 16):
comm "modprobe", pid 3848, jiffies 4362982860 (age 18.153s)
hex dump (first 16 bytes):
76 64 70 61 73 69 6d 5f 6e 65 74 00 6b 6b 6b a5 vdpasim_net.kkk.
backtrace:
[<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150
[<ffffffff81731d53>] kstrdup+0x33/0x60
[<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110
[<ffffffff82d87aab>] dev_set_name+0xab/0xe0
[<ffffffff82d91a23>] device_add+0xe3/0x1a80
[<ffffffffa0270013>] 0xffffffffa0270013
[<ffffffff81001c27>] do_one_initcall+0x87/0x2e0
[<ffffffff813739cb>] do_init_module+0x1ab/0x640
[<ffffffff81379d20>] load_module+0x5d00/0x77f0
[<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0
[<ffffffff83c4d505>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
(vdpa_sim_blk)
unreferenced object 0xffff8881070c1250 (size 16):
comm "modprobe", pid 6844, jiffies 4364069319 (age 17.572s)
hex dump (first 16 bytes):
76 64 70 61 73 69 6d 5f 62 6c 6b 00 6b 6b 6b a5 vdpasim_blk.kkk.
backtrace:
[<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150
[<ffffffff81731d53>] kstrdup+0x33/0x60
[<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110
[<ffffffff82d87aab>] dev_set_name+0xab/0xe0
[<ffffffff82d91a23>] device_add+0xe3/0x1a80
[<ffffffffa0220013>] 0xffffffffa0220013
[<ffffffff81001c27>] do_one_initcall+0x87/0x2e0
[<ffffffff813739cb>] do_init_module+0x1ab/0x640
[<ffffffff81379d20>] load_module+0x5d00/0x77f0
[<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0
[<ffffffff83c4d505>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |