| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
sched/psi: use kernfs polling functions for PSI trigger polling
Destroying psi trigger in cgroup_file_release causes UAF issues when
a cgroup is removed from under a polling process. This is happening
because cgroup removal causes a call to cgroup_file_release while the
actual file is still alive. Destroying the trigger at this point would
also destroy its waitqueue head and if there is still a polling process
on that file accessing the waitqueue, it will step on the freed pointer:
do_select
vfs_poll
do_rmdir
cgroup_rmdir
kernfs_drain_open_files
cgroup_file_release
cgroup_pressure_release
psi_trigger_destroy
wake_up_pollfree(&t->event_wait)
// vfs_poll is unblocked
synchronize_rcu
kfree(t)
poll_freewait -> UAF access to the trigger's waitqueue head
Patch [1] fixed this issue for epoll() case using wake_up_pollfree(),
however the same issue exists for synchronous poll() case.
The root cause of this issue is that the lifecycles of the psi trigger's
waitqueue and of the file associated with the trigger are different. Fix
this by using kernfs_generic_poll function when polling on cgroup-specific
psi triggers. It internally uses kernfs_open_node->poll waitqueue head
with its lifecycle tied to the file's lifecycle. This also renders the
fix in [1] obsolete, so revert it.
[1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()") |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: sf-pdma: pdma_desc memory leak fix
Commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread support for a
DMA channel") changed sf_pdma_prep_dma_memcpy() to unconditionally
allocate a new sf_pdma_desc each time it is called.
The driver previously recycled descs, by checking the in_use flag, only
allocating additional descs if the existing one was in use. This logic
was removed in commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread
support for a DMA channel"), but sf_pdma_free_desc() was not changed to
handle the new behaviour.
As a result, each time sf_pdma_prep_dma_memcpy() is called, the previous
descriptor is leaked, over time leading to memory starvation:
unreferenced object 0xffffffe008447300 (size 192):
comm "irq/39-mchp_dsc", pid 343, jiffies 4294906910 (age 981.200s)
hex dump (first 32 bytes):
00 00 00 ff 00 00 00 00 b8 c1 00 00 00 00 00 00 ................
00 00 70 08 10 00 00 00 00 00 00 c0 00 00 00 00 ..p.............
backtrace:
[<00000000064a04f4>] kmemleak_alloc+0x1e/0x28
[<00000000018927a7>] kmem_cache_alloc+0x11e/0x178
[<000000002aea8d16>] sf_pdma_prep_dma_memcpy+0x40/0x112
Add the missing kfree() to sf_pdma_free_desc(), and remove the redundant
in_use flag. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential memory leaks at error path for UMP open
The allocation and initialization errors at alloc_midi_urbs() that is
called at MIDI 2.0 / UMP device are supposed to be handled at the
caller side by invoking free_midi_urbs(). However, free_midi_urbs()
loops only for ep->num_urbs entries, and since ep->num_entries wasn't
updated yet at the allocation / init error in alloc_midi_urbs(), this
entry won't be released.
The intention of free_midi_urbs() is to release the whole elements, so
change the loop size to NUM_URBS to scan over all elements for fixing
the missed releases.
Also, the call of free_midi_urbs() is missing at
snd_usb_midi_v2_open(). Although it'll be released later at
reopen/close or disconnection, it's better to release immediately at
the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between balance and cancel/pause
Syzbot reported a panic that looks like this:
assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, in fs/btrfs/ioctl.c:465
------------[ cut here ]------------
kernel BUG at fs/btrfs/messages.c:259!
RIP: 0010:btrfs_assertfail+0x2c/0x30 fs/btrfs/messages.c:259
Call Trace:
<TASK>
btrfs_exclop_balance fs/btrfs/ioctl.c:465 [inline]
btrfs_ioctl_balance fs/btrfs/ioctl.c:3564 [inline]
btrfs_ioctl+0x531e/0x5b30 fs/btrfs/ioctl.c:4632
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The reproducer is running a balance and a cancel or pause in parallel.
The way balance finishes is a bit wonky, if we were paused we need to
save the balance_ctl in the fs_info, but clear it otherwise and cleanup.
However we rely on the return values being specific errors, or having a
cancel request or no pause request. If balance completes and returns 0,
but we have a pause or cancel request we won't do the appropriate
cleanup, and then the next time we try to start a balance we'll trip
this ASSERT.
The error handling is just wrong here, we always want to clean up,
unless we got -ECANCELLED and we set the appropriate pause flag in the
exclusive op. With this patch the reproducer ran for an hour without
tripping, previously it would trip in less than a few minutes. |
| In the Linux kernel, the following vulnerability has been resolved:
net: vxlan: prevent NULL deref in vxlan_xmit_one
Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in
vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the
following NULL dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:vxlan_xmit_one+0xbb3/0x1580
Call Trace:
vxlan_xmit+0x429/0x610
dev_hard_start_xmit+0x55/0xa0
__dev_queue_xmit+0x6d0/0x7f0
ip_finish_output2+0x24b/0x590
ip_output+0x63/0x110
Mentioned commits changed the code path in vxlan_xmit_one and as a side
effect the sock4/6 pointer validity checks in vxlan(6)_get_route were
lost. Fix this by adding back checks.
Since both commits being fixed were released in the same version (v6.7)
and are strongly related, bundle the fixes in a single commit. |
| PMB 7.4.6 contains a SQL injection vulnerability in the storage parameter of the ajax.php endpoint that allows remote attackers to manipulate database queries. Attackers can exploit the unsanitized 'id' parameter by injecting conditional sleep statements to extract information or perform time-based blind SQL injection attacks. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix memory leak in binder_init()
In binder_init(), the destruction of binder_alloc_shrinker_init() is not
performed in the wrong path, which will cause memory leaks. So this commit
introduces binder_alloc_shrinker_exit() and calls it in the wrong path to
fix that. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix an issue found by KASAN
Write only correct size (32 instead of 64 bytes). |
| CMSimple 5.4 contains an authenticated local file inclusion vulnerability that allows remote attackers to manipulate PHP session files and execute arbitrary code. Attackers can leverage the vulnerability by changing the functions file path and uploading malicious PHP code through session file upload mechanisms. |
| CMSimple 5.4 contains an authenticated remote code execution vulnerability that allows logged-in attackers to inject malicious PHP code into template files. Attackers can exploit the template editing functionality by crafting a reverse shell payload and saving it through the template editing endpoint with a valid CSRF token. |
| CSZ CMS 1.2.7 contains an HTML injection vulnerability that allows authenticated users to insert malicious hyperlinks in message titles. Attackers can craft POST requests to the member messaging system with HTML-based links to potentially conduct phishing or social engineering attacks. |
| CSZ CMS 1.2.7 contains a persistent cross-site scripting vulnerability that allows unauthorized users to embed malicious JavaScript in private messages. Attackers can send messages with script payloads in the user-agent header, which will execute when an admin views the message in the backend dashboard. |
| Epic Games Easy Anti-Cheat 4.0 contains an unquoted service path vulnerability that allows local non-privileged users to execute arbitrary code with elevated system privileges. Attackers can exploit the service configuration by inserting malicious code in the system root path that would execute with LocalSystem privileges during application startup. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27668. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27675. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27676. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27677. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27678. |
| TradingView Desktop Electron Uncontrolled Search Path Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of TradingView Desktop. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the configuration of the Electron framework. The product loads a script file from an unsecured location. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of a target user. Was ZDI-CAN-27395. |
| IceWarp14 X-File-Operation Command Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of IceWarp. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of the X-File-Operation header. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of SYSTEM. Was ZDI-CAN-27394. |