| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_router: Fix neighbour use-after-free
We sometimes observe use-after-free when dereferencing a neighbour [1].
The problem seems to be that the driver stores a pointer to the
neighbour, but without holding a reference on it. A reference is only
taken when the neighbour is used by a nexthop.
Fix by simplifying the reference counting scheme. Always take a
reference when storing a neighbour pointer in a neighbour entry. Avoid
taking a referencing when the neighbour is used by a nexthop as the
neighbour entry associated with the nexthop already holds a reference.
Tested by running the test that uncovered the problem over 300 times.
Without this patch the problem was reproduced after a handful of
iterations.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_neigh_entry_update+0x2d4/0x310
Read of size 8 at addr ffff88817f8e3420 by task ip/3929
CPU: 3 UID: 0 PID: 3929 Comm: ip Not tainted 6.18.0-rc4-virtme-g36b21a067510 #3 PREEMPT(full)
Hardware name: Nvidia SN5600/VMOD0013, BIOS 5.13 05/31/2023
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xa0
print_address_description.constprop.0+0x6e/0x300
print_report+0xfc/0x1fb
kasan_report+0xe4/0x110
mlxsw_sp_neigh_entry_update+0x2d4/0x310
mlxsw_sp_router_rif_gone_sync+0x35f/0x510
mlxsw_sp_rif_destroy+0x1ea/0x730
mlxsw_sp_inetaddr_port_vlan_event+0xa1/0x1b0
__mlxsw_sp_inetaddr_lag_event+0xcc/0x130
__mlxsw_sp_inetaddr_event+0xf5/0x3c0
mlxsw_sp_router_netdevice_event+0x1015/0x1580
notifier_call_chain+0xcc/0x150
call_netdevice_notifiers_info+0x7e/0x100
__netdev_upper_dev_unlink+0x10b/0x210
netdev_upper_dev_unlink+0x79/0xa0
vrf_del_slave+0x18/0x50
do_set_master+0x146/0x7d0
do_setlink.isra.0+0x9a0/0x2880
rtnl_newlink+0x637/0xb20
rtnetlink_rcv_msg+0x6fe/0xb90
netlink_rcv_skb+0x123/0x380
netlink_unicast+0x4a3/0x770
netlink_sendmsg+0x75b/0xc90
__sock_sendmsg+0xbe/0x160
____sys_sendmsg+0x5b2/0x7d0
___sys_sendmsg+0xfd/0x180
__sys_sendmsg+0x124/0x1c0
do_syscall_64+0xbb/0xfd0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[...]
Allocated by task 109:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7b/0x90
__kmalloc_noprof+0x2c1/0x790
neigh_alloc+0x6af/0x8f0
___neigh_create+0x63/0xe90
mlxsw_sp_nexthop_neigh_init+0x430/0x7e0
mlxsw_sp_nexthop_type_init+0x212/0x960
mlxsw_sp_nexthop6_group_info_init.constprop.0+0x81f/0x1280
mlxsw_sp_nexthop6_group_get+0x392/0x6a0
mlxsw_sp_fib6_entry_create+0x46a/0xfd0
mlxsw_sp_router_fib6_replace+0x1ed/0x5f0
mlxsw_sp_router_fib6_event_work+0x10a/0x2a0
process_one_work+0xd57/0x1390
worker_thread+0x4d6/0xd40
kthread+0x355/0x5b0
ret_from_fork+0x1d4/0x270
ret_from_fork_asm+0x11/0x20
Freed by task 154:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x43/0x70
kmem_cache_free_bulk.part.0+0x1eb/0x5e0
kvfree_rcu_bulk+0x1f2/0x260
kfree_rcu_work+0x130/0x1b0
process_one_work+0xd57/0x1390
worker_thread+0x4d6/0xd40
kthread+0x355/0x5b0
ret_from_fork+0x1d4/0x270
ret_from_fork_asm+0x11/0x20
Last potentially related work creation:
kasan_save_stack+0x30/0x50
kasan_record_aux_stack+0x8c/0xa0
kvfree_call_rcu+0x93/0x5b0
mlxsw_sp_router_neigh_event_work+0x67d/0x860
process_one_work+0xd57/0x1390
worker_thread+0x4d6/0xd40
kthread+0x355/0x5b0
ret_from_fork+0x1d4/0x270
ret_from_fork_asm+0x11/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: ets: Remove drr class from the active list if it changes to strict
Whenever a user issues an ets qdisc change command, transforming a
drr class into a strict one, the ets code isn't checking whether that
class was in the active list and removing it. This means that, if a
user changes a strict class (which was in the active list) back to a drr
one, that class will be added twice to the active list [1].
Doing so with the following commands:
tc qdisc add dev lo root handle 1: ets bands 2 strict 1
tc qdisc add dev lo parent 1:2 handle 20: \
tbf rate 8bit burst 100b latency 1s
tc filter add dev lo parent 1: basic classid 1:2
ping -c1 -W0.01 -s 56 127.0.0.1
tc qdisc change dev lo root handle 1: ets bands 2 strict 2
tc qdisc change dev lo root handle 1: ets bands 2 strict 1
ping -c1 -W0.01 -s 56 127.0.0.1
Will trigger the following splat with list debug turned on:
[ 59.279014][ T365] ------------[ cut here ]------------
[ 59.279452][ T365] list_add double add: new=ffff88801d60e350, prev=ffff88801d60e350, next=ffff88801d60e2c0.
[ 59.280153][ T365] WARNING: CPU: 3 PID: 365 at lib/list_debug.c:35 __list_add_valid_or_report+0x17f/0x220
[ 59.280860][ T365] Modules linked in:
[ 59.281165][ T365] CPU: 3 UID: 0 PID: 365 Comm: tc Not tainted 6.18.0-rc7-00105-g7e9f13163c13-dirty #239 PREEMPT(voluntary)
[ 59.281977][ T365] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 59.282391][ T365] RIP: 0010:__list_add_valid_or_report+0x17f/0x220
[ 59.282842][ T365] Code: 89 c6 e8 d4 b7 0d ff 90 0f 0b 90 90 31 c0 e9 31 ff ff ff 90 48 c7 c7 e0 a0 22 9f 48 89 f2 48 89 c1 4c 89 c6 e8 b2 b7 0d ff 90 <0f> 0b 90 90 31 c0 e9 0f ff ff ff 48 89 f7 48 89 44 24 10 4c 89 44
...
[ 59.288812][ T365] Call Trace:
[ 59.289056][ T365] <TASK>
[ 59.289224][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.289546][ T365] ets_qdisc_change+0xd2b/0x1e80
[ 59.289891][ T365] ? __lock_acquire+0x7e7/0x1be0
[ 59.290223][ T365] ? __pfx_ets_qdisc_change+0x10/0x10
[ 59.290546][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.290898][ T365] ? __mutex_trylock_common+0xda/0x240
[ 59.291228][ T365] ? __pfx___mutex_trylock_common+0x10/0x10
[ 59.291655][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.291993][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.292313][ T365] ? trace_contention_end+0xc8/0x110
[ 59.292656][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.293022][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.293351][ T365] tc_modify_qdisc+0x63a/0x1cf0
Fix this by always checking and removing an ets class from the active list
when changing it to strict.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/tree/net/sched/sch_ets.c?id=ce052b9402e461a9aded599f5b47e76bc727f7de#n663 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: Revert "scsi: qla2xxx: Perform lockless command completion in abort path"
This reverts commit 0367076b0817d5c75dfb83001ce7ce5c64d803a9.
The commit being reverted added code to __qla2x00_abort_all_cmds() to
call sp->done() without holding a spinlock. But unlike the older code
below it, this new code failed to check sp->cmd_type and just assumed
TYPE_SRB, which results in a jump to an invalid pointer in target-mode
with TYPE_TGT_CMD:
qla2xxx [0000:65:00.0]-d034:8: qla24xx_do_nack_work create sess success
0000000009f7a79b
qla2xxx [0000:65:00.0]-5003:8: ISP System Error - mbx1=1ff5h mbx2=10h
mbx3=0h mbx4=0h mbx5=191h mbx6=0h mbx7=0h.
qla2xxx [0000:65:00.0]-d01e:8: -> fwdump no buffer
qla2xxx [0000:65:00.0]-f03a:8: qla_target(0): System error async event
0x8002 occurred
qla2xxx [0000:65:00.0]-00af:8: Performing ISP error recovery -
ha=0000000058183fda.
BUG: kernel NULL pointer dereference, address: 0000000000000000
PF: supervisor instruction fetch in kernel mode
PF: error_code(0x0010) - not-present page
PGD 0 P4D 0
Oops: 0010 [#1] SMP
CPU: 2 PID: 9446 Comm: qla2xxx_8_dpc Tainted: G O 6.1.133 #1
Hardware name: Supermicro Super Server/X11SPL-F, BIOS 4.2 12/15/2023
RIP: 0010:0x0
Code: Unable to access opcode bytes at 0xffffffffffffffd6.
RSP: 0018:ffffc90001f93dc8 EFLAGS: 00010206
RAX: 0000000000000282 RBX: 0000000000000355 RCX: ffff88810d16a000
RDX: ffff88810dbadaa8 RSI: 0000000000080000 RDI: ffff888169dc38c0
RBP: ffff888169dc38c0 R08: 0000000000000001 R09: 0000000000000045
R10: ffffffffa034bdf0 R11: 0000000000000000 R12: ffff88810800bb40
R13: 0000000000001aa8 R14: ffff888100136610 R15: ffff8881070f7400
FS: 0000000000000000(0000) GS:ffff88bf80080000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffd6 CR3: 000000010c8ff006 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die+0x4d/0x8b
? page_fault_oops+0x91/0x180
? trace_buffer_unlock_commit_regs+0x38/0x1a0
? exc_page_fault+0x391/0x5e0
? asm_exc_page_fault+0x22/0x30
__qla2x00_abort_all_cmds+0xcb/0x3e0 [qla2xxx_scst]
qla2x00_abort_all_cmds+0x50/0x70 [qla2xxx_scst]
qla2x00_abort_isp_cleanup+0x3b7/0x4b0 [qla2xxx_scst]
qla2x00_abort_isp+0xfd/0x860 [qla2xxx_scst]
qla2x00_do_dpc+0x581/0xa40 [qla2xxx_scst]
kthread+0xa8/0xd0
</TASK>
Then commit 4475afa2646d ("scsi: qla2xxx: Complete command early within
lock") added the spinlock back, because not having the lock caused a
race and a crash. But qla2x00_abort_srb() in the switch below already
checks for qla2x00_chip_is_down() and handles it the same way, so the
code above the switch is now redundant and still buggy in target-mode.
Remove it. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: stm32: sai: fix OF node leak on probe
The reference taken to the sync provider OF node when probing the
platform device is currently only dropped if the set_sync() callback
fails during DAI probe.
Make sure to drop the reference on platform probe failures (e.g. probe
deferral) and on driver unbind.
This also avoids a potential use-after-free in case the DAI is ever
reprobed without first rebinding the platform driver. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: Avoid NULL pointer deref for evicted BOs
It is possible for a BO to exist that is not currently associated with a
resource, e.g. because it has been evicted.
When devcoredump tries to read the contents of all BOs for dumping, we need
to expect this as well -- in this case, ENODATA is recorded instead of the
buffer contents. |
| In the Linux kernel, the following vulnerability has been resolved:
team: fix check for port enabled in team_queue_override_port_prio_changed()
There has been a syzkaller bug reported recently with the following
trace:
list_del corruption, ffff888058bea080->prev is LIST_POISON2 (dead000000000122)
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:59!
Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI
CPU: 3 UID: 0 PID: 21246 Comm: syz.0.2928 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:__list_del_entry_valid_or_report+0x13e/0x200 lib/list_debug.c:59
Code: 48 c7 c7 e0 71 f0 8b e8 30 08 ef fc 90 0f 0b 48 89 ef e8 a5 02 55 fd 48 89 ea 48 89 de 48 c7 c7 40 72 f0 8b e8 13 08 ef fc 90 <0f> 0b 48 89 ef e8 88 02 55 fd 48 89 ea 48 b8 00 00 00 00 00 fc ff
RSP: 0018:ffffc9000d49f370 EFLAGS: 00010286
RAX: 000000000000004e RBX: ffff888058bea080 RCX: ffffc9002817d000
RDX: 0000000000000000 RSI: ffffffff819becc6 RDI: 0000000000000005
RBP: dead000000000122 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000080000000 R11: 0000000000000001 R12: ffff888039e9c230
R13: ffff888058bea088 R14: ffff888058bea080 R15: ffff888055461480
FS: 00007fbbcfe6f6c0(0000) GS:ffff8880d6d0a000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000110c3afcb0 CR3: 00000000382c7000 CR4: 0000000000352ef0
Call Trace:
<TASK>
__list_del_entry_valid include/linux/list.h:132 [inline]
__list_del_entry include/linux/list.h:223 [inline]
list_del_rcu include/linux/rculist.h:178 [inline]
__team_queue_override_port_del drivers/net/team/team_core.c:826 [inline]
__team_queue_override_port_del drivers/net/team/team_core.c:821 [inline]
team_queue_override_port_prio_changed drivers/net/team/team_core.c:883 [inline]
team_priority_option_set+0x171/0x2f0 drivers/net/team/team_core.c:1534
team_option_set drivers/net/team/team_core.c:376 [inline]
team_nl_options_set_doit+0x8ae/0xe60 drivers/net/team/team_core.c:2653
genl_family_rcv_msg_doit+0x209/0x2f0 net/netlink/genetlink.c:1115
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0x55c/0x800 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x158/0x420 net/netlink/af_netlink.c:2552
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline]
netlink_unicast+0x5aa/0x870 net/netlink/af_netlink.c:1346
netlink_sendmsg+0x8c8/0xdd0 net/netlink/af_netlink.c:1896
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg net/socket.c:742 [inline]
____sys_sendmsg+0xa98/0xc70 net/socket.c:2630
___sys_sendmsg+0x134/0x1d0 net/socket.c:2684
__sys_sendmsg+0x16d/0x220 net/socket.c:2716
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The problem is in this flow:
1) Port is enabled, queue_id != 0, in qom_list
2) Port gets disabled
-> team_port_disable()
-> team_queue_override_port_del()
-> del (removed from list)
3) Port is disabled, queue_id != 0, not in any list
4) Priority changes
-> team_queue_override_port_prio_changed()
-> checks: port disabled && queue_id != 0
-> calls del - hits the BUG as it is removed already
To fix this, change the check in team_queue_override_port_prio_changed()
so it returns early if port is not enabled. |
| A vulnerability has been identified in the installation/uninstallation of the Nessus Agent Tray App on Windows Hosts which could lead to escalation of privileges. |
| An arbitrary file upload vulnerability in the /utils/uploadFile component of Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows attackers to execute arbitrary code via uploading a crafted PDF file. |
| phpgurukul News Portal Project V4.1 has File Upload Vulnerability via upload.php, which enables the upload of files of any format to the server without identity authentication. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix a UAF problem in xattr repair
The xchk_setup_xattr_buf function can allocate a new value buffer, which
means that any reference to ab->value before the call could become a
dangling pointer. Fix this by moving an assignment to after the buffer
setup. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_ishtp: Fix UAF after unbinding driver
After unbinding the driver, another kthread `cros_ec_console_log_work`
is still accessing the device, resulting an UAF and crash.
The driver doesn't unregister the EC device in .remove() which should
shutdown sub-devices synchronously. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix filename leak in __io_openat_prep()
__io_openat_prep() allocates a struct filename using getname(). However,
for the condition of the file being installed in the fixed file table as
well as having O_CLOEXEC flag set, the function returns early. At that
point, the request doesn't have REQ_F_NEED_CLEANUP flag set. Due to this,
the memory for the newly allocated struct filename is not cleaned up,
causing a memory leak.
Fix this by setting the REQ_F_NEED_CLEANUP for the request just after the
successful getname() call, so that when the request is torn down, the
filename will be cleaned up, along with other resources needing cleanup. |
| phpgurukul News Portal Project V4.1 has an Arbitrary File Deletion Vulnerability in remove_file.php. The parameter file can cause any file to be deleted. |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the serviceName2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid potential deadlock
As Jiaming Zhang and syzbot reported, there is potential deadlock in
f2fs as below:
Chain exists of:
&sbi->cp_rwsem --> fs_reclaim --> sb_internal#2
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
rlock(sb_internal#2);
lock(fs_reclaim);
lock(sb_internal#2);
rlock(&sbi->cp_rwsem);
*** DEADLOCK ***
3 locks held by kswapd0/73:
#0: ffffffff8e247a40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat mm/vmscan.c:7015 [inline]
#0: ffffffff8e247a40 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0x951/0x2800 mm/vmscan.c:7389
#1: ffff8880118400e0 (&type->s_umount_key#50){.+.+}-{4:4}, at: super_trylock_shared fs/super.c:562 [inline]
#1: ffff8880118400e0 (&type->s_umount_key#50){.+.+}-{4:4}, at: super_cache_scan+0x91/0x4b0 fs/super.c:197
#2: ffff888011840610 (sb_internal#2){.+.+}-{0:0}, at: f2fs_evict_inode+0x8d9/0x1b60 fs/f2fs/inode.c:890
stack backtrace:
CPU: 0 UID: 0 PID: 73 Comm: kswapd0 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_circular_bug+0x2ee/0x310 kernel/locking/lockdep.c:2043
check_noncircular+0x134/0x160 kernel/locking/lockdep.c:2175
check_prev_add kernel/locking/lockdep.c:3165 [inline]
check_prevs_add kernel/locking/lockdep.c:3284 [inline]
validate_chain+0xb9b/0x2140 kernel/locking/lockdep.c:3908
__lock_acquire+0xab9/0xd20 kernel/locking/lockdep.c:5237
lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868
down_read+0x46/0x2e0 kernel/locking/rwsem.c:1537
f2fs_down_read fs/f2fs/f2fs.h:2278 [inline]
f2fs_lock_op fs/f2fs/f2fs.h:2357 [inline]
f2fs_do_truncate_blocks+0x21c/0x10c0 fs/f2fs/file.c:791
f2fs_truncate_blocks+0x10a/0x300 fs/f2fs/file.c:867
f2fs_truncate+0x489/0x7c0 fs/f2fs/file.c:925
f2fs_evict_inode+0x9f2/0x1b60 fs/f2fs/inode.c:897
evict+0x504/0x9c0 fs/inode.c:810
f2fs_evict_inode+0x1dc/0x1b60 fs/f2fs/inode.c:853
evict+0x504/0x9c0 fs/inode.c:810
dispose_list fs/inode.c:852 [inline]
prune_icache_sb+0x21b/0x2c0 fs/inode.c:1000
super_cache_scan+0x39b/0x4b0 fs/super.c:224
do_shrink_slab+0x6ef/0x1110 mm/shrinker.c:437
shrink_slab_memcg mm/shrinker.c:550 [inline]
shrink_slab+0x7ef/0x10d0 mm/shrinker.c:628
shrink_one+0x28a/0x7c0 mm/vmscan.c:4955
shrink_many mm/vmscan.c:5016 [inline]
lru_gen_shrink_node mm/vmscan.c:5094 [inline]
shrink_node+0x315d/0x3780 mm/vmscan.c:6081
kswapd_shrink_node mm/vmscan.c:6941 [inline]
balance_pgdat mm/vmscan.c:7124 [inline]
kswapd+0x147c/0x2800 mm/vmscan.c:7389
kthread+0x70e/0x8a0 kernel/kthread.c:463
ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
The root cause is deadlock among four locks as below:
kswapd
- fs_reclaim --- Lock A
- shrink_one
- evict
- f2fs_evict_inode
- sb_start_intwrite --- Lock B
- iput
- evict
- f2fs_evict_inode
- sb_start_intwrite --- Lock B
- f2fs_truncate
- f2fs_truncate_blocks
- f2fs_do_truncate_blocks
- f2fs_lock_op --- Lock C
ioctl
- f2fs_ioc_commit_atomic_write
- f2fs_lock_op --- Lock C
- __f2fs_commit_atomic_write
- __replace_atomic_write_block
- f2fs_get_dnode_of_data
- __get_node_folio
- f2fs_check_nid_range
- f2fs_handle_error
- f2fs_record_errors
- f2fs_down_write --- Lock D
open
- do_open
- do_truncate
- security_inode_need_killpriv
- f2fs_getxattr
- lookup_all_xattrs
- f2fs_handle_error
- f2fs_record_errors
- f2fs_down_write --- Lock D
- f2fs_commit_super
- read_mapping_folio
- filemap_alloc_folio_noprof
- prepare_alloc_pages
- fs_reclaim_acquire --- Lock A
In order to a
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s/slb: Fix SLB multihit issue during SLB preload
On systems using the hash MMU, there is a software SLB preload cache that
mirrors the entries loaded into the hardware SLB buffer. This preload
cache is subject to periodic eviction — typically after every 256 context
switches — to remove old entry.
To optimize performance, the kernel skips switch_mmu_context() in
switch_mm_irqs_off() when the prev and next mm_struct are the same.
However, on hash MMU systems, this can lead to inconsistencies between
the hardware SLB and the software preload cache.
If an SLB entry for a process is evicted from the software cache on one
CPU, and the same process later runs on another CPU without executing
switch_mmu_context(), the hardware SLB may retain stale entries. If the
kernel then attempts to reload that entry, it can trigger an SLB
multi-hit error.
The following timeline shows how stale SLB entries are created and can
cause a multi-hit error when a process moves between CPUs without a
MMU context switch.
CPU 0 CPU 1
----- -----
Process P
exec swapper/1
load_elf_binary
begin_new_exc
activate_mm
switch_mm_irqs_off
switch_mmu_context
switch_slb
/*
* This invalidates all
* the entries in the HW
* and setup the new HW
* SLB entries as per the
* preload cache.
*/
context_switch
sched_migrate_task migrates process P to cpu-1
Process swapper/0 context switch (to process P)
(uses mm_struct of Process P) switch_mm_irqs_off()
switch_slb
load_slb++
/*
* load_slb becomes 0 here
* and we evict an entry from
* the preload cache with
* preload_age(). We still
* keep HW SLB and preload
* cache in sync, that is
* because all HW SLB entries
* anyways gets evicted in
* switch_slb during SLBIA.
* We then only add those
* entries back in HW SLB,
* which are currently
* present in preload_cache
* (after eviction).
*/
load_elf_binary continues...
setup_new_exec()
slb_setup_new_exec()
sched_switch event
sched_migrate_task migrates
process P to cpu-0
context_switch from swapper/0 to Process P
switch_mm_irqs_off()
/*
* Since both prev and next mm struct are same we don't call
* switch_mmu_context(). This will cause the HW SLB and SW preload
* cache to go out of sync in preload_new_slb_context. Because there
* was an SLB entry which was evicted from both HW and preload cache
* on cpu-1. Now later in preload_new_slb_context(), when we will try
* to add the same preload entry again, we will add this to the SW
* preload cache and then will add it to the HW SLB. Since on cpu-0
* this entry was never invalidated, hence adding this entry to the HW
* SLB will cause a SLB multi-hit error.
*/
load_elf_binary cont
---truncated--- |
| An insufficient input validation vulnerability in NETGEAR Orbi routers
allows attackers connected to the router's LAN to execute OS command
injections. |
| An insufficient input validation vulnerability in the NETGEAR XR1000v2
allows attackers connected to the router's LAN to execute OS command
injections. |
| The CP Image Store with Slideshow plugin for WordPress is vulnerable to authorization bypass in all versions up to, and including, 1.1.9 due to a logic error in the 'cpis_admin_init' function's permission check. This makes it possible for authenticated attackers, with Contributor-level access and above, to import arbitrary products via XML, if the XML file has already been uploaded to the server. |
| Mitigation bypass in the DOM: Security component. This vulnerability affects Firefox < 147, Firefox ESR < 115.32, and Firefox ESR < 140.7. |