| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An optional feature of PCI MSI called "Multiple Message" allows a
device to use multiple consecutive interrupt vectors. Unlike for MSI-X,
the setting up of these consecutive vectors needs to happen all in one
go. In this handling an error path could be taken in different
situations, with or without a particular lock held. This error path
wrongly releases the lock even when it is not currently held.
|
| Mailhog 1.0.1 contains a stored cross-site scripting vulnerability that allows attackers to inject malicious scripts through email attachments. Attackers can send crafted emails with XSS payloads to execute arbitrary API calls, including message deletion and browser manipulation. |
| Improper Validation of Array Index (CWE-129) in Packetbeat’s MongoDB protocol parser can allow an attacker to cause Overflow Buffers (CAPEC-100) through specially crafted network traffic. This requires an attacker to send a malformed payload to a monitored network interface where MongoDB protocol parsing is enabled. |
| J2EE Misconfiguration: Data Transmission Without Encryption vulnerability in Apache NimBLE.
Improper handling of Pause Encryption procedure on Link Layer results in a previously encrypted connection being left in un-encrypted state allowing an eavesdropper to observe the remainder of the exchange.
This issue affects Apache NimBLE: through <= 1.8.0.
Users are recommended to upgrade to version 1.9.0, which fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport
[Why]
Potential out of bounds access in dml2_calculate_rq_and_dlg_params()
because the value of out_lowest_state_idx used as an index for FCLKChangeSupport
array can be greater than 1.
[How]
Currently dml2 core specifies identical values for all FCLKChangeSupport
elements. Always use index 0 in the condition to avoid out of bounds access. |
| Algo 8028 Control Panel version 3.3.3 contains a command injection vulnerability in the fm-data.lua endpoint that allows authenticated attackers to execute arbitrary commands. Attackers can exploit the insecure 'source' parameter by injecting commands that are executed with root privileges, enabling remote code execution through a crafted POST request. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Lemonsoft WordPress add on allows Cross-Site Scripting (XSS).This issue affects WordPress add on: 2025.7.1. |
| In the Linux kernel, the following vulnerability has been resolved:
e1000: fix OOB in e1000_tbi_should_accept()
In e1000_tbi_should_accept() we read the last byte of the frame via
'data[length - 1]' to evaluate the TBI workaround. If the descriptor-
reported length is zero or larger than the actual RX buffer size, this
read goes out of bounds and can hit unrelated slab objects. The issue
is observed from the NAPI receive path (e1000_clean_rx_irq):
==================================================================
BUG: KASAN: slab-out-of-bounds in e1000_tbi_should_accept+0x610/0x790
Read of size 1 at addr ffff888014114e54 by task sshd/363
CPU: 0 PID: 363 Comm: sshd Not tainted 5.18.0-rc1 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0x5a/0x74
print_address_description+0x7b/0x440
print_report+0x101/0x200
kasan_report+0xc1/0xf0
e1000_tbi_should_accept+0x610/0x790
e1000_clean_rx_irq+0xa8c/0x1110
e1000_clean+0xde2/0x3c10
__napi_poll+0x98/0x380
net_rx_action+0x491/0xa20
__do_softirq+0x2c9/0x61d
do_softirq+0xd1/0x120
</IRQ>
<TASK>
__local_bh_enable_ip+0xfe/0x130
ip_finish_output2+0x7d5/0xb00
__ip_queue_xmit+0xe24/0x1ab0
__tcp_transmit_skb+0x1bcb/0x3340
tcp_write_xmit+0x175d/0x6bd0
__tcp_push_pending_frames+0x7b/0x280
tcp_sendmsg_locked+0x2e4f/0x32d0
tcp_sendmsg+0x24/0x40
sock_write_iter+0x322/0x430
vfs_write+0x56c/0xa60
ksys_write+0xd1/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f511b476b10
Code: 73 01 c3 48 8b 0d 88 d3 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d f9 2b 2c 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 31 c3 48 83 ec 08 e8 8e 9b 01 00 48 89 04 24
RSP: 002b:00007ffc9211d4e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000004024 RCX: 00007f511b476b10
RDX: 0000000000004024 RSI: 0000559a9385962c RDI: 0000000000000003
RBP: 0000559a9383a400 R08: fffffffffffffff0 R09: 0000000000004f00
R10: 0000000000000070 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffc9211d57f R14: 0000559a9347bde7 R15: 0000000000000003
</TASK>
Allocated by task 1:
__kasan_krealloc+0x131/0x1c0
krealloc+0x90/0xc0
add_sysfs_param+0xcb/0x8a0
kernel_add_sysfs_param+0x81/0xd4
param_sysfs_builtin+0x138/0x1a6
param_sysfs_init+0x57/0x5b
do_one_initcall+0x104/0x250
do_initcall_level+0x102/0x132
do_initcalls+0x46/0x74
kernel_init_freeable+0x28f/0x393
kernel_init+0x14/0x1a0
ret_from_fork+0x22/0x30
The buggy address belongs to the object at ffff888014114000
which belongs to the cache kmalloc-2k of size 2048
The buggy address is located 1620 bytes to the right of
2048-byte region [ffff888014114000, ffff888014114800]
The buggy address belongs to the physical page:
page:ffffea0000504400 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14110
head:ffffea0000504400 order:3 compound_mapcount:0 compound_pincount:0
flags: 0x100000000010200(slab|head|node=0|zone=1)
raw: 0100000000010200 0000000000000000 dead000000000001 ffff888013442000
raw: 0000000000000000 0000000000080008 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
==================================================================
This happens because the TBI check unconditionally dereferences the last
byte without validating the reported length first:
u8 last_byte = *(data + length - 1);
Fix by rejecting the frame early if the length is zero, or if it exceeds
adapter->rx_buffer_len. This preserves the TBI workaround semantics for
valid frames and prevents touching memory beyond the RX buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: fix off-by-one issues in iavf_config_rss_reg()
There are off-by-one bugs when configuring RSS hash key and lookup
table, causing out-of-bounds reads to memory [1] and out-of-bounds
writes to device registers.
Before commit 43a3d9ba34c9 ("i40evf: Allow PF driver to configure RSS"),
the loop upper bounds were:
i <= I40E_VFQF_{HKEY,HLUT}_MAX_INDEX
which is safe since the value is the last valid index.
That commit changed the bounds to:
i <= adapter->rss_{key,lut}_size / 4
where `rss_{key,lut}_size / 4` is the number of dwords, so the last
valid index is `(rss_{key,lut}_size / 4) - 1`. Therefore, using `<=`
accesses one element past the end.
Fix the issues by using `<` instead of `<=`, ensuring we do not exceed
the bounds.
[1] KASAN splat about rss_key_size off-by-one
BUG: KASAN: slab-out-of-bounds in iavf_config_rss+0x619/0x800
Read of size 4 at addr ffff888102c50134 by task kworker/u8:6/63
CPU: 0 UID: 0 PID: 63 Comm: kworker/u8:6 Not tainted 6.18.0-rc2-enjuk-tnguy-00378-g3005f5b77652-dirty #156 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Workqueue: iavf iavf_watchdog_task
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xb0
print_report+0x170/0x4f3
kasan_report+0xe1/0x1a0
iavf_config_rss+0x619/0x800
iavf_watchdog_task+0x2be7/0x3230
process_one_work+0x7fd/0x1420
worker_thread+0x4d1/0xd40
kthread+0x344/0x660
ret_from_fork+0x249/0x320
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 63:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
__kmalloc_noprof+0x246/0x6f0
iavf_watchdog_task+0x28fc/0x3230
process_one_work+0x7fd/0x1420
worker_thread+0x4d1/0xd40
kthread+0x344/0x660
ret_from_fork+0x249/0x320
ret_from_fork_asm+0x1a/0x30
The buggy address belongs to the object at ffff888102c50100
which belongs to the cache kmalloc-64 of size 64
The buggy address is located 0 bytes to the right of
allocated 52-byte region [ffff888102c50100, ffff888102c50134)
The buggy address belongs to the physical page:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x102c50
flags: 0x200000000000000(node=0|zone=2)
page_type: f5(slab)
raw: 0200000000000000 ffff8881000418c0 dead000000000122 0000000000000000
raw: 0000000000000000 0000000080200020 00000000f5000000 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888102c50000: 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc
ffff888102c50080: 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc
>ffff888102c50100: 00 00 00 00 00 00 04 fc fc fc fc fc fc fc fc fc
^
ffff888102c50180: 00 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc
ffff888102c50200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cm: Fix leaking the multicast GID table reference
If the CM ID is destroyed while the CM event for multicast creating is
still queued the cancel_work_sync() will prevent the work from running
which also prevents destroying the ah_attr. This leaks a refcount and
triggers a WARN:
GID entry ref leak for dev syz1 index 2 ref=573
WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 release_gid_table drivers/infiniband/core/cache.c:806 [inline]
WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 gid_table_release_one+0x284/0x3cc drivers/infiniband/core/cache.c:886
Destroy the ah_attr after canceling the work, it is safe to call this
twice. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: Cap the number of PCR banks
tpm2_get_pcr_allocation() does not cap any upper limit for the number of
banks. Cap the limit to eight banks so that out of bounds values coming
from external I/O cause on only limited harm. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: fix use-after-free on probe deferral
The driver is dropping the references taken to the larb devices during
probe after successful lookup as well as on errors. This can
potentially lead to a use-after-free in case a larb device has not yet
been bound to its driver so that the iommu driver probe defers.
Fix this by keeping the references as expected while the iommu driver is
bound. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: ets: Always remove class from active list before deleting in ets_qdisc_change
zdi-disclosures@trendmicro.com says:
The vulnerability is a race condition between `ets_qdisc_dequeue` and
`ets_qdisc_change`. It leads to UAF on `struct Qdisc` object.
Attacker requires the capability to create new user and network namespace
in order to trigger the bug.
See my additional commentary at the end of the analysis.
Analysis:
static int ets_qdisc_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
...
// (1) this lock is preventing .change handler (`ets_qdisc_change`)
//to race with .dequeue handler (`ets_qdisc_dequeue`)
sch_tree_lock(sch);
for (i = nbands; i < oldbands; i++) {
if (i >= q->nstrict && q->classes[i].qdisc->q.qlen)
list_del_init(&q->classes[i].alist);
qdisc_purge_queue(q->classes[i].qdisc);
}
WRITE_ONCE(q->nbands, nbands);
for (i = nstrict; i < q->nstrict; i++) {
if (q->classes[i].qdisc->q.qlen) {
// (2) the class is added to the q->active
list_add_tail(&q->classes[i].alist, &q->active);
q->classes[i].deficit = quanta[i];
}
}
WRITE_ONCE(q->nstrict, nstrict);
memcpy(q->prio2band, priomap, sizeof(priomap));
for (i = 0; i < q->nbands; i++)
WRITE_ONCE(q->classes[i].quantum, quanta[i]);
for (i = oldbands; i < q->nbands; i++) {
q->classes[i].qdisc = queues[i];
if (q->classes[i].qdisc != &noop_qdisc)
qdisc_hash_add(q->classes[i].qdisc, true);
}
// (3) the qdisc is unlocked, now dequeue can be called in parallel
// to the rest of .change handler
sch_tree_unlock(sch);
ets_offload_change(sch);
for (i = q->nbands; i < oldbands; i++) {
// (4) we're reducing the refcount for our class's qdisc and
// freeing it
qdisc_put(q->classes[i].qdisc);
// (5) If we call .dequeue between (4) and (5), we will have
// a strong UAF and we can control RIP
q->classes[i].qdisc = NULL;
WRITE_ONCE(q->classes[i].quantum, 0);
q->classes[i].deficit = 0;
gnet_stats_basic_sync_init(&q->classes[i].bstats);
memset(&q->classes[i].qstats, 0, sizeof(q->classes[i].qstats));
}
return 0;
}
Comment:
This happens because some of the classes have their qdiscs assigned to
NULL, but remain in the active list. This commit fixes this issue by always
removing the class from the active list before deleting and freeing its
associated qdisc
Reproducer Steps
(trimmed version of what was sent by zdi-disclosures@trendmicro.com)
```
DEV="${DEV:-lo}"
ROOT_HANDLE="${ROOT_HANDLE:-1:}"
BAND2_HANDLE="${BAND2_HANDLE:-20:}" # child under 1:2
PING_BYTES="${PING_BYTES:-48}"
PING_COUNT="${PING_COUNT:-200000}"
PING_DST="${PING_DST:-127.0.0.1}"
SLOW_TBF_RATE="${SLOW_TBF_RATE:-8bit}"
SLOW_TBF_BURST="${SLOW_TBF_BURST:-100b}"
SLOW_TBF_LAT="${SLOW_TBF_LAT:-1s}"
cleanup() {
tc qdisc del dev "$DEV" root 2>/dev/null
}
trap cleanup EXIT
ip link set "$DEV" up
tc qdisc del dev "$DEV" root 2>/dev/null || true
tc qdisc add dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2
tc qdisc add dev "$DEV" parent 1:2 handle "$BAND2_HANDLE" \
tbf rate "$SLOW_TBF_RATE" burst "$SLOW_TBF_BURST" latency "$SLOW_TBF_LAT"
tc filter add dev "$DEV" parent 1: protocol all prio 1 u32 match u32 0 0 flowid 1:2
tc -s qdisc ls dev $DEV
ping -I "$DEV" -f -c "$PING_COUNT" -s "$PING_BYTES" -W 0.001 "$PING_DST" \
>/dev/null 2>&1 &
tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 0
tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2
tc -s qdisc ls dev $DEV
tc qdisc del dev "$DEV" parent
---truncated--- |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the mac2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the security_5g parameter of the sub_4CA50 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| phpgurukul News Portal Project V4.1 is vulnerable to SQL Injection in check_availablity.php. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb: dtv5100: fix out-of-bounds in dtv5100_i2c_msg()
rlen value is a user-controlled value, but dtv5100_i2c_msg() does not
check the size of the rlen value. Therefore, if it is set to a value
larger than sizeof(st->data), an out-of-bounds vuln occurs for st->data.
Therefore, we need to add proper range checking to prevent this vuln. |
| Sandbox escape due to integer overflow in the Graphics component. This vulnerability affects Firefox < 147, Firefox ESR < 115.32, and Firefox ESR < 140.7. |
| Denial-of-service in the DOM: Service Workers component. This vulnerability affects Firefox < 147. |
| Incorrect boundary conditions in the Graphics component. This vulnerability affects Firefox < 147, Firefox ESR < 115.32, and Firefox ESR < 140.7. |