Search

Search Results (331950 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-22994 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix reference count leak in bpf_prog_test_run_xdp() syzbot is reporting unregister_netdevice: waiting for sit0 to become free. Usage count = 2 problem. A debug printk() patch found that a refcount is obtained at xdp_convert_md_to_buff() from bpf_prog_test_run_xdp(). According to commit ec94670fcb3b ("bpf: Support specifying ingress via xdp_md context in BPF_PROG_TEST_RUN"), the refcount obtained by xdp_convert_md_to_buff() will be released by xdp_convert_buff_to_md(). Therefore, we can consider that the error handling path introduced by commit 1c1949982524 ("bpf: introduce frags support to bpf_prog_test_run_xdp()") forgot to call xdp_convert_buff_to_md().
CVE-2026-22993 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: idpf: Fix RSS LUT NULL ptr issue after soft reset During soft reset, the RSS LUT is freed and not restored unless the interface is up. If an ethtool command that accesses the rss lut is attempted immediately after reset, it will result in NULL ptr dereference. Also, there is no need to reset the rss lut if the soft reset does not involve queue count change. After soft reset, set the RSS LUT to default values based on the updated queue count only if the reset was a result of a queue count change and the LUT was not configured by the user. In all other cases, don't touch the LUT. Steps to reproduce: ** Bring the interface down (if up) ifconfig eth1 down ** update the queue count (eg., 27->20) ethtool -L eth1 combined 20 ** display the RSS LUT ethtool -x eth1 [82375.558338] BUG: kernel NULL pointer dereference, address: 0000000000000000 [82375.558373] #PF: supervisor read access in kernel mode [82375.558391] #PF: error_code(0x0000) - not-present page [82375.558408] PGD 0 P4D 0 [82375.558421] Oops: Oops: 0000 [#1] SMP NOPTI <snip> [82375.558516] RIP: 0010:idpf_get_rxfh+0x108/0x150 [idpf] [82375.558786] Call Trace: [82375.558793] <TASK> [82375.558804] rss_prepare.isra.0+0x187/0x2a0 [82375.558827] rss_prepare_data+0x3a/0x50 [82375.558845] ethnl_default_doit+0x13d/0x3e0 [82375.558863] genl_family_rcv_msg_doit+0x11f/0x180 [82375.558886] genl_rcv_msg+0x1ad/0x2b0 [82375.558902] ? __pfx_ethnl_default_doit+0x10/0x10 [82375.558920] ? __pfx_genl_rcv_msg+0x10/0x10 [82375.558937] netlink_rcv_skb+0x58/0x100 [82375.558957] genl_rcv+0x2c/0x50 [82375.558971] netlink_unicast+0x289/0x3e0 [82375.558988] netlink_sendmsg+0x215/0x440 [82375.559005] __sys_sendto+0x234/0x240 [82375.559555] __x64_sys_sendto+0x28/0x30 [82375.560068] x64_sys_call+0x1909/0x1da0 [82375.560576] do_syscall_64+0x7a/0xfa0 [82375.561076] ? clear_bhb_loop+0x60/0xb0 [82375.561567] entry_SYSCALL_64_after_hwframe+0x76/0x7e <snip>
CVE-2026-22992 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: return the handler error from mon_handle_auth_done() Currently any error from ceph_auth_handle_reply_done() is propagated via finish_auth() but isn't returned from mon_handle_auth_done(). This results in higher layers learning that (despite the monitor considering us to be successfully authenticated) something went wrong in the authentication phase and reacting accordingly, but msgr2 still trying to proceed with establishing the session in the background. In the case of secure mode this can trigger a WARN in setup_crypto() and later lead to a NULL pointer dereference inside of prepare_auth_signature().
CVE-2026-22991 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: make free_choose_arg_map() resilient to partial allocation free_choose_arg_map() may dereference a NULL pointer if its caller fails after a partial allocation. For example, in decode_choose_args(), if allocation of arg_map->args fails, execution jumps to the fail label and free_choose_arg_map() is called. Since arg_map->size is updated to a non-zero value before memory allocation, free_choose_arg_map() will iterate over arg_map->args and dereference a NULL pointer. To prevent this potential NULL pointer dereference and make free_choose_arg_map() more resilient, add checks for pointers before iterating.
CVE-2026-22990 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: replace overzealous BUG_ON in osdmap_apply_incremental() If the osdmap is (maliciously) corrupted such that the incremental osdmap epoch is different from what is expected, there is no need to BUG. Instead, just declare the incremental osdmap to be invalid.
CVE-2026-22989 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nfsd: check that server is running in unlock_filesystem If we are trying to unlock the filesystem via an administrative interface and nfsd isn't running, it crashes the server. This happens currently because nfsd4_revoke_states() access state structures (eg., conf_id_hashtbl) that has been freed as a part of the server shutdown. [ 59.465072] Call trace: [ 59.465308] nfsd4_revoke_states+0x1b4/0x898 [nfsd] (P) [ 59.465830] write_unlock_fs+0x258/0x440 [nfsd] [ 59.466278] nfsctl_transaction_write+0xb0/0x120 [nfsd] [ 59.466780] vfs_write+0x1f0/0x938 [ 59.467088] ksys_write+0xfc/0x1f8 [ 59.467395] __arm64_sys_write+0x74/0xb8 [ 59.467746] invoke_syscall.constprop.0+0xdc/0x1e8 [ 59.468177] do_el0_svc+0x154/0x1d8 [ 59.468489] el0_svc+0x40/0xe0 [ 59.468767] el0t_64_sync_handler+0xa0/0xe8 [ 59.469138] el0t_64_sync+0x1ac/0x1b0 Ensure this can't happen by taking the nfsd_mutex and checking that the server is still up, and then holding the mutex across the call to nfsd4_revoke_states().
CVE-2026-22988 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: arp: do not assume dev_hard_header() does not change skb->head arp_create() is the only dev_hard_header() caller making assumption about skb->head being unchanged. A recent commit broke this assumption. Initialize @arp pointer after dev_hard_header() call.
CVE-2026-22987 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: act_api: avoid dereferencing ERR_PTR in tcf_idrinfo_destroy syzbot reported a crash in tc_act_in_hw() during netns teardown where tcf_idrinfo_destroy() passed an ERR_PTR(-EBUSY) value as a tc_action pointer, leading to an invalid dereference. Guard against ERR_PTR entries when iterating the action IDR so teardown does not call tc_act_in_hw() on an error pointer.
CVE-2026-22986 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: gpiolib: fix race condition for gdev->srcu If two drivers were calling gpiochip_add_data_with_key(), one may be traversing the srcu-protected list in gpio_name_to_desc(), meanwhile other has just added its gdev in gpiodev_add_to_list_unlocked(). This creates a non-mutexed and non-protected timeframe, when one instance is dereferencing and using &gdev->srcu, before the other has initialized it, resulting in crash: [ 4.935481] Unable to handle kernel paging request at virtual address ffff800272bcc000 [ 4.943396] Mem abort info: [ 4.943400] ESR = 0x0000000096000005 [ 4.943403] EC = 0x25: DABT (current EL), IL = 32 bits [ 4.943407] SET = 0, FnV = 0 [ 4.943410] EA = 0, S1PTW = 0 [ 4.943413] FSC = 0x05: level 1 translation fault [ 4.943416] Data abort info: [ 4.943418] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 4.946220] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 4.955261] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 4.955268] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000038e6c000 [ 4.961449] [ffff800272bcc000] pgd=0000000000000000 [ 4.969203] , p4d=1000000039739003 [ 4.979730] , pud=0000000000000000 [ 4.980210] phandle (CPU): 0x0000005e, phandle (BE): 0x5e000000 for node "reset" [ 4.991736] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP ... [ 5.121359] pc : __srcu_read_lock+0x44/0x98 [ 5.131091] lr : gpio_name_to_desc+0x60/0x1a0 [ 5.153671] sp : ffff8000833bb430 [ 5.298440] [ 5.298443] Call trace: [ 5.298445] __srcu_read_lock+0x44/0x98 [ 5.309484] gpio_name_to_desc+0x60/0x1a0 [ 5.320692] gpiochip_add_data_with_key+0x488/0xf00 5.946419] ---[ end trace 0000000000000000 ]--- Move initialization code for gdev fields before it is added to gpio_devices, with adjacent initialization code. Adjust goto statements to reflect modified order of operations [Bartosz: fixed a build issue, removed stray newline]
CVE-2026-22985 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: idpf: Fix RSS LUT NULL pointer crash on early ethtool operations The RSS LUT is not initialized until the interface comes up, causing the following NULL pointer crash when ethtool operations like rxhash on/off are performed before the interface is brought up for the first time. Move RSS LUT initialization from ndo_open to vport creation to ensure LUT is always available. This enables RSS configuration via ethtool before bringing the interface up. Simplify LUT management by maintaining all changes in the driver's soft copy and programming zeros to the indirection table when rxhash is disabled. Defer HW programming until the interface comes up if it is down during rxhash and LUT configuration changes. Steps to reproduce: ** Load idpf driver; interfaces will be created modprobe idpf ** Before bringing the interfaces up, turn rxhash off ethtool -K eth2 rxhash off [89408.371875] BUG: kernel NULL pointer dereference, address: 0000000000000000 [89408.371908] #PF: supervisor read access in kernel mode [89408.371924] #PF: error_code(0x0000) - not-present page [89408.371940] PGD 0 P4D 0 [89408.371953] Oops: Oops: 0000 [#1] SMP NOPTI <snip> [89408.372052] RIP: 0010:memcpy_orig+0x16/0x130 [89408.372310] Call Trace: [89408.372317] <TASK> [89408.372326] ? idpf_set_features+0xfc/0x180 [idpf] [89408.372363] __netdev_update_features+0x295/0xde0 [89408.372384] ethnl_set_features+0x15e/0x460 [89408.372406] genl_family_rcv_msg_doit+0x11f/0x180 [89408.372429] genl_rcv_msg+0x1ad/0x2b0 [89408.372446] ? __pfx_ethnl_set_features+0x10/0x10 [89408.372465] ? __pfx_genl_rcv_msg+0x10/0x10 [89408.372482] netlink_rcv_skb+0x58/0x100 [89408.372502] genl_rcv+0x2c/0x50 [89408.372516] netlink_unicast+0x289/0x3e0 [89408.372533] netlink_sendmsg+0x215/0x440 [89408.372551] __sys_sendto+0x234/0x240 [89408.372571] __x64_sys_sendto+0x28/0x30 [89408.372585] x64_sys_call+0x1909/0x1da0 [89408.372604] do_syscall_64+0x7a/0xfa0 [89408.373140] ? clear_bhb_loop+0x60/0xb0 [89408.373647] entry_SYSCALL_64_after_hwframe+0x76/0x7e [89408.378887] </TASK> <snip>
CVE-2026-22984 1 Linux 1 Linux Kernel 2026-02-09 7.1 High
In the Linux kernel, the following vulnerability has been resolved: libceph: prevent potential out-of-bounds reads in handle_auth_done() Perform an explicit bounds check on payload_len to avoid a possible out-of-bounds access in the callout. [ idryomov: changelog ]
CVE-2026-22983 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: do not write to msg_get_inq in callee NULL pointer dereference fix. msg_get_inq is an input field from caller to callee. Don't set it in the callee, as the caller may not clear it on struct reuse. This is a kernel-internal variant of msghdr only, and the only user does reinitialize the field. So this is not critical for that reason. But it is more robust to avoid the write, and slightly simpler code. And it fixes a bug, see below. Callers set msg_get_inq to request the input queue length to be returned in msg_inq. This is equivalent to but independent from the SO_INQ request to return that same info as a cmsg (tp->recvmsg_inq). To reduce branching in the hot path the second also sets the msg_inq. That is WAI. This is a fix to commit 4d1442979e4a ("af_unix: don't post cmsg for SO_INQ unless explicitly asked for"), which fixed the inverse. Also avoid NULL pointer dereference in unix_stream_read_generic if state->msg is NULL and msg->msg_get_inq is written. A NULL state->msg can happen when splicing as of commit 2b514574f7e8 ("net: af_unix: implement splice for stream af_unix sockets"). Also collapse two branches using a bitwise or.
CVE-2026-22982 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: net: mscc: ocelot: Fix crash when adding interface under a lag Commit 15faa1f67ab4 ("lan966x: Fix crash when adding interface under a lag") fixed a similar issue in the lan966x driver caused by a NULL pointer dereference. The ocelot_set_aggr_pgids() function in the ocelot driver has similar logic and is susceptible to the same crash. This issue specifically affects the ocelot_vsc7514.c frontend, which leaves unused ports as NULL pointers. The felix_vsc9959.c frontend is unaffected as it uses the DSA framework which registers all ports. Fix this by checking if the port pointer is valid before accessing it.
CVE-2026-22981 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: idpf: detach and close netdevs while handling a reset Protect the reset path from callbacks by setting the netdevs to detached state and close any netdevs in UP state until the reset handling has completed. During a reset, the driver will de-allocate resources for the vport, and there is no guarantee that those will recover, which is why the existing vport_ctrl_lock does not provide sufficient protection. idpf_detach_and_close() is called right before reset handling. If the reset handling succeeds, the netdevs state is recovered via call to idpf_attach_and_open(). If the reset handling fails the netdevs remain down. The detach/down calls are protected with RTNL lock to avoid racing with callbacks. On the recovery side the attach can be done without holding the RTNL lock as there are no callbacks expected at that point, due to detach/close always being done first in that flow. The previous logic restoring the netdevs state based on the IDPF_VPORT_UP_REQUESTED flag in the init task is not needed anymore, hence the removal of idpf_set_vport_state(). The IDPF_VPORT_UP_REQUESTED is still being used to restore the state of the netdevs following the reset, but has no use outside of the reset handling flow. idpf_init_hard_reset() is converted to void, since it was used as such and there is no error handling being done based on its return value. Before this change, invoking hard and soft resets simultaneously will cause the driver to lose the vport state: ip -br a <inf> UP echo 1 > /sys/class/net/ens801f0/device/reset& \ ethtool -L ens801f0 combined 8 ip -br a <inf> DOWN ip link set <inf> up ip -br a <inf> DOWN Also in case of a failure in the reset path, the netdev is left exposed to external callbacks, while vport resources are not initialized, leading to a crash on subsequent ifup/down: [408471.398966] idpf 0000:83:00.0: HW reset detected [408471.411744] idpf 0000:83:00.0: Device HW Reset initiated [408472.277901] idpf 0000:83:00.0: The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x2 [408508.125551] BUG: kernel NULL pointer dereference, address: 0000000000000078 [408508.126112] #PF: supervisor read access in kernel mode [408508.126687] #PF: error_code(0x0000) - not-present page [408508.127256] PGD 2aae2f067 P4D 0 [408508.127824] Oops: Oops: 0000 [#1] SMP NOPTI ... [408508.130871] RIP: 0010:idpf_stop+0x39/0x70 [idpf] ... [408508.139193] Call Trace: [408508.139637] <TASK> [408508.140077] __dev_close_many+0xbb/0x260 [408508.140533] __dev_change_flags+0x1cf/0x280 [408508.140987] netif_change_flags+0x26/0x70 [408508.141434] dev_change_flags+0x3d/0xb0 [408508.141878] devinet_ioctl+0x460/0x890 [408508.142321] inet_ioctl+0x18e/0x1d0 [408508.142762] ? _copy_to_user+0x22/0x70 [408508.143207] sock_do_ioctl+0x3d/0xe0 [408508.143652] sock_ioctl+0x10e/0x330 [408508.144091] ? find_held_lock+0x2b/0x80 [408508.144537] __x64_sys_ioctl+0x96/0xe0 [408508.144979] do_syscall_64+0x79/0x3d0 [408508.145415] entry_SYSCALL_64_after_hwframe+0x76/0x7e [408508.145860] RIP: 0033:0x7f3e0bb4caff
CVE-2026-22980 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nfsd: provide locking for v4_end_grace Writing to v4_end_grace can race with server shutdown and result in memory being accessed after it was freed - reclaim_str_hashtbl in particularly. We cannot hold nfsd_mutex across the nfsd4_end_grace() call as that is held while client_tracking_op->init() is called and that can wait for an upcall to nfsdcltrack which can write to v4_end_grace, resulting in a deadlock. nfsd4_end_grace() is also called by the landromat work queue and this doesn't require locking as server shutdown will stop the work and wait for it before freeing anything that nfsd4_end_grace() might access. However, we must be sure that writing to v4_end_grace doesn't restart the work item after shutdown has already waited for it. For this we add a new flag protected with nn->client_lock. It is set only while it is safe to make client tracking calls, and v4_end_grace only schedules work while the flag is set with the spinlock held. So this patch adds a nfsd_net field "client_tracking_active" which is set as described. Another field "grace_end_forced", is set when v4_end_grace is written. After this is set, and providing client_tracking_active is set, the laundromat is scheduled. This "grace_end_forced" field bypasses other checks for whether the grace period has finished. This resolves a race which can result in use-after-free.
CVE-2026-22979 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix memory leak in skb_segment_list for GRO packets When skb_segment_list() is called during packet forwarding, it handles packets that were aggregated by the GRO engine. Historically, the segmentation logic in skb_segment_list assumes that individual segments are split from a parent SKB and may need to carry their own socket memory accounting. Accordingly, the code transfers truesize from the parent to the newly created segments. Prior to commit ed4cccef64c1 ("gro: fix ownership transfer"), this truesize subtraction in skb_segment_list() was valid because fragments still carry a reference to the original socket. However, commit ed4cccef64c1 ("gro: fix ownership transfer") changed this behavior by ensuring that fraglist entries are explicitly orphaned (skb->sk = NULL) to prevent illegal orphaning later in the stack. This change meant that the entire socket memory charge remained with the head SKB, but the corresponding accounting logic in skb_segment_list() was never updated. As a result, the current code unconditionally adds each fragment's truesize to delta_truesize and subtracts it from the parent SKB. Since the fragments are no longer charged to the socket, this subtraction results in an effective under-count of memory when the head is freed. This causes sk_wmem_alloc to remain non-zero, preventing socket destruction and leading to a persistent memory leak. The leak can be observed via KMEMLEAK when tearing down the networking environment: unreferenced object 0xffff8881e6eb9100 (size 2048): comm "ping", pid 6720, jiffies 4295492526 backtrace: kmem_cache_alloc_noprof+0x5c6/0x800 sk_prot_alloc+0x5b/0x220 sk_alloc+0x35/0xa00 inet6_create.part.0+0x303/0x10d0 __sock_create+0x248/0x640 __sys_socket+0x11b/0x1d0 Since skb_segment_list() is exclusively used for SKB_GSO_FRAGLIST packets constructed by GRO, the truesize adjustment is removed. The call to skb_release_head_state() must be preserved. As documented in commit cf673ed0e057 ("net: fix fraglist segmentation reference count leak"), it is still required to correctly drop references to SKB extensions that may be overwritten during __copy_skb_header().
CVE-2026-22978 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: avoid kernel-infoleak from struct iw_point struct iw_point has a 32bit hole on 64bit arches. struct iw_point { void __user *pointer; /* Pointer to the data (in user space) */ __u16 length; /* number of fields or size in bytes */ __u16 flags; /* Optional params */ }; Make sure to zero the structure to avoid disclosing 32bits of kernel data to user space.
CVE-2026-22977 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: sock: fix hardened usercopy panic in sock_recv_errqueue skbuff_fclone_cache was created without defining a usercopy region, [1] unlike skbuff_head_cache which properly whitelists the cb[] field. [2] This causes a usercopy BUG() when CONFIG_HARDENED_USERCOPY is enabled and the kernel attempts to copy sk_buff.cb data to userspace via sock_recv_errqueue() -> put_cmsg(). The crash occurs when: 1. TCP allocates an skb using alloc_skb_fclone() (from skbuff_fclone_cache) [1] 2. The skb is cloned via skb_clone() using the pre-allocated fclone [3] 3. The cloned skb is queued to sk_error_queue for timestamp reporting 4. Userspace reads the error queue via recvmsg(MSG_ERRQUEUE) 5. sock_recv_errqueue() calls put_cmsg() to copy serr->ee from skb->cb [4] 6. __check_heap_object() fails because skbuff_fclone_cache has no usercopy whitelist [5] When cloned skbs allocated from skbuff_fclone_cache are used in the socket error queue, accessing the sock_exterr_skb structure in skb->cb via put_cmsg() triggers a usercopy hardening violation: [ 5.379589] usercopy: Kernel memory exposure attempt detected from SLUB object 'skbuff_fclone_cache' (offset 296, size 16)! [ 5.382796] kernel BUG at mm/usercopy.c:102! [ 5.383923] Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI [ 5.384903] CPU: 1 UID: 0 PID: 138 Comm: poc_put_cmsg Not tainted 6.12.57 #7 [ 5.384903] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 5.384903] RIP: 0010:usercopy_abort+0x6c/0x80 [ 5.384903] Code: 1a 86 51 48 c7 c2 40 15 1a 86 41 52 48 c7 c7 c0 15 1a 86 48 0f 45 d6 48 c7 c6 80 15 1a 86 48 89 c1 49 0f 45 f3 e8 84 27 88 ff <0f> 0b 490 [ 5.384903] RSP: 0018:ffffc900006f77a8 EFLAGS: 00010246 [ 5.384903] RAX: 000000000000006f RBX: ffff88800f0ad2a8 RCX: 1ffffffff0f72e74 [ 5.384903] RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffffffff87b973a0 [ 5.384903] RBP: 0000000000000010 R08: 0000000000000000 R09: fffffbfff0f72e74 [ 5.384903] R10: 0000000000000003 R11: 79706f6372657375 R12: 0000000000000001 [ 5.384903] R13: ffff88800f0ad2b8 R14: ffffea00003c2b40 R15: ffffea00003c2b00 [ 5.384903] FS: 0000000011bc4380(0000) GS:ffff8880bf100000(0000) knlGS:0000000000000000 [ 5.384903] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5.384903] CR2: 000056aa3b8e5fe4 CR3: 000000000ea26004 CR4: 0000000000770ef0 [ 5.384903] PKRU: 55555554 [ 5.384903] Call Trace: [ 5.384903] <TASK> [ 5.384903] __check_heap_object+0x9a/0xd0 [ 5.384903] __check_object_size+0x46c/0x690 [ 5.384903] put_cmsg+0x129/0x5e0 [ 5.384903] sock_recv_errqueue+0x22f/0x380 [ 5.384903] tls_sw_recvmsg+0x7ed/0x1960 [ 5.384903] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5.384903] ? schedule+0x6d/0x270 [ 5.384903] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5.384903] ? mutex_unlock+0x81/0xd0 [ 5.384903] ? __pfx_mutex_unlock+0x10/0x10 [ 5.384903] ? __pfx_tls_sw_recvmsg+0x10/0x10 [ 5.384903] ? _raw_spin_lock_irqsave+0x8f/0xf0 [ 5.384903] ? _raw_read_unlock_irqrestore+0x20/0x40 [ 5.384903] ? srso_alias_return_thunk+0x5/0xfbef5 The crash offset 296 corresponds to skb2->cb within skbuff_fclones: - sizeof(struct sk_buff) = 232 - offsetof(struct sk_buff, cb) = 40 - offset of skb2.cb in fclones = 232 + 40 = 272 - crash offset 296 = 272 + 24 (inside sock_exterr_skb.ee) This patch uses a local stack variable as a bounce buffer to avoid the hardened usercopy check failure. [1] https://elixir.bootlin.com/linux/v6.12.62/source/net/ipv4/tcp.c#L885 [2] https://elixir.bootlin.com/linux/v6.12.62/source/net/core/skbuff.c#L5104 [3] https://elixir.bootlin.com/linux/v6.12.62/source/net/core/skbuff.c#L5566 [4] https://elixir.bootlin.com/linux/v6.12.62/source/net/core/skbuff.c#L5491 [5] https://elixir.bootlin.com/linux/v6.12.62/source/mm/slub.c#L5719
CVE-2026-22976 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: Fix NULL deref when deactivating inactive aggregate in qfq_reset `qfq_class->leaf_qdisc->q.qlen > 0` does not imply that the class itself is active. Two qfq_class objects may point to the same leaf_qdisc. This happens when: 1. one QFQ qdisc is attached to the dev as the root qdisc, and 2. another QFQ qdisc is temporarily referenced (e.g., via qdisc_get() / qdisc_put()) and is pending to be destroyed, as in function tc_new_tfilter. When packets are enqueued through the root QFQ qdisc, the shared leaf_qdisc->q.qlen increases. At the same time, the second QFQ qdisc triggers qdisc_put and qdisc_destroy: the qdisc enters qfq_reset() with its own q->q.qlen == 0, but its class's leaf qdisc->q.qlen > 0. Therefore, the qfq_reset would wrongly deactivate an inactive aggregate and trigger a null-deref in qfq_deactivate_agg: [ 0.903172] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 0.903571] #PF: supervisor write access in kernel mode [ 0.903860] #PF: error_code(0x0002) - not-present page [ 0.904177] PGD 10299b067 P4D 10299b067 PUD 10299c067 PMD 0 [ 0.904502] Oops: Oops: 0002 [#1] SMP NOPTI [ 0.904737] CPU: 0 UID: 0 PID: 135 Comm: exploit Not tainted 6.19.0-rc3+ #2 NONE [ 0.905157] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.17.0-0-gb52ca86e094d-prebuilt.qemu.org 04/01/2014 [ 0.905754] RIP: 0010:qfq_deactivate_agg (include/linux/list.h:992 (discriminator 2) include/linux/list.h:1006 (discriminator 2) net/sched/sch_qfq.c:1367 (discriminator 2) net/sched/sch_qfq.c:1393 (discriminator 2)) [ 0.906046] Code: 0f 84 4d 01 00 00 48 89 70 18 8b 4b 10 48 c7 c2 ff ff ff ff 48 8b 78 08 48 d3 e2 48 21 f2 48 2b 13 48 8b 30 48 d3 ea 8b 4b 18 0 Code starting with the faulting instruction =========================================== 0: 0f 84 4d 01 00 00 je 0x153 6: 48 89 70 18 mov %rsi,0x18(%rax) a: 8b 4b 10 mov 0x10(%rbx),%ecx d: 48 c7 c2 ff ff ff ff mov $0xffffffffffffffff,%rdx 14: 48 8b 78 08 mov 0x8(%rax),%rdi 18: 48 d3 e2 shl %cl,%rdx 1b: 48 21 f2 and %rsi,%rdx 1e: 48 2b 13 sub (%rbx),%rdx 21: 48 8b 30 mov (%rax),%rsi 24: 48 d3 ea shr %cl,%rdx 27: 8b 4b 18 mov 0x18(%rbx),%ecx ... [ 0.907095] RSP: 0018:ffffc900004a39a0 EFLAGS: 00010246 [ 0.907368] RAX: ffff8881043a0880 RBX: ffff888102953340 RCX: 0000000000000000 [ 0.907723] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 [ 0.908100] RBP: ffff888102952180 R08: 0000000000000000 R09: 0000000000000000 [ 0.908451] R10: ffff8881043a0000 R11: 0000000000000000 R12: ffff888102952000 [ 0.908804] R13: ffff888102952180 R14: ffff8881043a0ad8 R15: ffff8881043a0880 [ 0.909179] FS: 000000002a1a0380(0000) GS:ffff888196d8d000(0000) knlGS:0000000000000000 [ 0.909572] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 0.909857] CR2: 0000000000000000 CR3: 0000000102993002 CR4: 0000000000772ef0 [ 0.910247] PKRU: 55555554 [ 0.910391] Call Trace: [ 0.910527] <TASK> [ 0.910638] qfq_reset_qdisc (net/sched/sch_qfq.c:357 net/sched/sch_qfq.c:1485) [ 0.910826] qdisc_reset (include/linux/skbuff.h:2195 include/linux/skbuff.h:2501 include/linux/skbuff.h:3424 include/linux/skbuff.h:3430 net/sched/sch_generic.c:1036) [ 0.911040] __qdisc_destroy (net/sched/sch_generic.c:1076) [ 0.911236] tc_new_tfilter (net/sched/cls_api.c:2447) [ 0.911447] rtnetlink_rcv_msg (net/core/rtnetlink.c:6958) [ 0.911663] ? __pfx_rtnetlink_rcv_msg (net/core/rtnetlink.c:6861) [ 0.911894] netlink_rcv_skb (net/netlink/af_netlink.c:2550) [ 0.912100] netlink_unicast (net/netlink/af_netlink.c:1319 net/netlink/af_netlink.c:1344) [ 0.912296] ? __alloc_skb (net/core/skbuff.c:706) [ 0.912484] netlink_sendmsg (net/netlink/af ---truncated---
CVE-2025-71199 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: iio: adc: at91-sama5d2_adc: Fix potential use-after-free in sama5d2_adc driver at91_adc_interrupt can call at91_adc_touch_data_handler function to start the work by schedule_work(&st->touch_st.workq). If we remove the module which will call at91_adc_remove to make cleanup, it will free indio_dev through iio_device_unregister but quite a bit later. While the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | at91_adc_workq_handler at91_adc_remove | iio_device_unregister(indio_dev) | //free indio_dev a bit later | | iio_push_to_buffers(indio_dev) | //use indio_dev Fix it by ensuring that the work is canceled before proceeding with the cleanup in at91_adc_remove.