Search

Search Results (333643 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23154 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: fix segmentation of forwarding fraglist GRO This patch enhances GSO segment handling by properly checking the SKB_GSO_DODGY flag for frag_list GSO packets, addressing low throughput issues observed when a station accesses IPv4 servers via hotspots with an IPv6-only upstream interface. Specifically, it fixes a bug in GSO segmentation when forwarding GRO packets containing a frag_list. The function skb_segment_list cannot correctly process GRO skbs that have been converted by XLAT, since XLAT only translates the header of the head skb. Consequently, skbs in the frag_list may remain untranslated, resulting in protocol inconsistencies and reduced throughput. To address this, the patch explicitly sets the SKB_GSO_DODGY flag for GSO packets in XLAT's IPv4/IPv6 protocol translation helpers (bpf_skb_proto_4_to_6 and bpf_skb_proto_6_to_4). This marks GSO packets as potentially modified after protocol translation. As a result, GSO segmentation will avoid using skb_segment_list and instead falls back to skb_segment for packets with the SKB_GSO_DODGY flag. This ensures that only safe and fully translated frag_list packets are processed by skb_segment_list, resolving protocol inconsistencies and improving throughput when forwarding GRO packets converted by XLAT.
CVE-2026-23155 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): fix error message Sinc commit 79a6d1bfe114 ("can: gs_usb: gs_usb_receive_bulk_callback(): unanchor URL on usb_submit_urb() error") a failing resubmit URB will print an info message. In the case of a short read where netdev has not yet been assigned, initialize as NULL to avoid dereferencing an undefined value. Also report the error value of the failed resubmit.
CVE-2026-23157 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not strictly require dirty metadata threshold for metadata writepages [BUG] There is an internal report that over 1000 processes are waiting at the io_schedule_timeout() of balance_dirty_pages(), causing a system hang and trigger a kernel coredump. The kernel is v6.4 kernel based, but the root problem still applies to any upstream kernel before v6.18. [CAUSE] From Jan Kara for his wisdom on the dirty page balance behavior first. This cgroup dirty limit was what was actually playing the role here because the cgroup had only a small amount of memory and so the dirty limit for it was something like 16MB. Dirty throttling is responsible for enforcing that nobody can dirty (significantly) more dirty memory than there's dirty limit. Thus when a task is dirtying pages it periodically enters into balance_dirty_pages() and we let it sleep there to slow down the dirtying. When the system is over dirty limit already (either globally or within a cgroup of the running task), we will not let the task exit from balance_dirty_pages() until the number of dirty pages drops below the limit. So in this particular case, as I already mentioned, there was a cgroup with relatively small amount of memory and as a result with dirty limit set at 16MB. A task from that cgroup has dirtied about 28MB worth of pages in btrfs btree inode and these were practically the only dirty pages in that cgroup. So that means the only way to reduce the dirty pages of that cgroup is to writeback the dirty pages of btrfs btree inode, and only after that those processes can exit balance_dirty_pages(). Now back to the btrfs part, btree_writepages() is responsible for writing back dirty btree inode pages. The problem here is, there is a btrfs internal threshold that if the btree inode's dirty bytes are below the 32M threshold, it will not do any writeback. This behavior is to batch as much metadata as possible so we won't write back those tree blocks and then later re-COW them again for another modification. This internal 32MiB is higher than the existing dirty page size (28MiB), meaning no writeback will happen, causing a deadlock between btrfs and cgroup: - Btrfs doesn't want to write back btree inode until more dirty pages - Cgroup/MM doesn't want more dirty pages for btrfs btree inode Thus any process touching that btree inode is put into sleep until the number of dirty pages is reduced. Thanks Jan Kara a lot for the analysis of the root cause. [ENHANCEMENT] Since kernel commit b55102826d7d ("btrfs: set AS_KERNEL_FILE on the btree_inode"), btrfs btree inode pages will only be charged to the root cgroup which should have a much larger limit than btrfs' 32MiB threshold. So it should not affect newer kernels. But for all current LTS kernels, they are all affected by this problem, and backporting the whole AS_KERNEL_FILE may not be a good idea. Even for newer kernels I still think it's a good idea to get rid of the internal threshold at btree_writepages(), since for most cases cgroup/MM has a better view of full system memory usage than btrfs' fixed threshold. For internal callers using btrfs_btree_balance_dirty() since that function is already doing internal threshold check, we don't need to bother them. But for external callers of btree_writepages(), just respect their requests and write back whatever they want, ignoring the internal btrfs threshold to avoid such deadlock on btree inode dirty page balancing.
CVE-2026-23159 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf: sched: Fix perf crash with new is_user_task() helper In order to do a user space stacktrace the current task needs to be a user task that has executed in user space. It use to be possible to test if a task is a user task or not by simply checking the task_struct mm field. If it was non NULL, it was a user task and if not it was a kernel task. But things have changed over time, and some kernel tasks now have their own mm field. An idea was made to instead test PF_KTHREAD and two functions were used to wrap this check in case it became more complex to test if a task was a user task or not[1]. But this was rejected and the C code simply checked the PF_KTHREAD directly. It was later found that not all kernel threads set PF_KTHREAD. The io-uring helpers instead set PF_USER_WORKER and this needed to be added as well. But checking the flags is still not enough. There's a very small window when a task exits that it frees its mm field and it is set back to NULL. If perf were to trigger at this moment, the flags test would say its a user space task but when perf would read the mm field it would crash with at NULL pointer dereference. Now there are flags that can be used to test if a task is exiting, but they are set in areas that perf may still want to profile the user space task (to see where it exited). The only real test is to check both the flags and the mm field. Instead of making this modification in every location, create a new is_user_task() helper function that does all the tests needed to know if it is safe to read the user space memory or not. [1] https://lore.kernel.org/all/20250425204120.639530125@goodmis.org/
CVE-2026-23160 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: octeon_ep: Fix memory leak in octep_device_setup() In octep_device_setup(), if octep_ctrl_net_init() fails, the function returns directly without unmapping the mapped resources and freeing the allocated configuration memory. Fix this by jumping to the unsupported_dev label, which performs the necessary cleanup. This aligns with the error handling logic of other paths in this function. Compile tested only. Issue found using a prototype static analysis tool and code review.
CVE-2026-23161 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/shmem, swap: fix race of truncate and swap entry split The helper for shmem swap freeing is not handling the order of swap entries correctly. It uses xa_cmpxchg_irq to erase the swap entry, but it gets the entry order before that using xa_get_order without lock protection, and it may get an outdated order value if the entry is split or changed in other ways after the xa_get_order and before the xa_cmpxchg_irq. And besides, the order could grow and be larger than expected, and cause truncation to erase data beyond the end border. For example, if the target entry and following entries are swapped in or freed, then a large folio was added in place and swapped out, using the same entry, the xa_cmpxchg_irq will still succeed, it's very unlikely to happen though. To fix that, open code the Xarray cmpxchg and put the order retrieval and value checking in the same critical section. Also, ensure the order won't exceed the end border, skip it if the entry goes across the border. Skipping large swap entries crosses the end border is safe here. Shmem truncate iterates the range twice, in the first iteration, find_lock_entries already filtered such entries, and shmem will swapin the entries that cross the end border and partially truncate the folio (split the folio or at least zero part of it). So in the second loop here, if we see a swap entry that crosses the end order, it must at least have its content erased already. I observed random swapoff hangs and kernel panics when stress testing ZSWAP with shmem. After applying this patch, all problems are gone.
CVE-2026-23162 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/xe/nvm: Fix double-free on aux add failure After a successful auxiliary_device_init(), aux_dev->dev.release (xe_nvm_release_dev()) is responsible for the kfree(nvm). When there is failure with auxiliary_device_add(), driver will call auxiliary_device_uninit(), which call put_device(). So that the .release callback will be triggered to free the memory associated with the auxiliary_device. Move the kfree(nvm) into the auxiliary_device_init() failure path and remove the err goto path to fix below error. " [ 13.232905] ================================================================== [ 13.232911] BUG: KASAN: double-free in xe_nvm_init+0x751/0xf10 [xe] [ 13.233112] Free of addr ffff888120635000 by task systemd-udevd/273 [ 13.233120] CPU: 8 UID: 0 PID: 273 Comm: systemd-udevd Not tainted 6.19.0-rc2-lgci-xe-kernel+ #225 PREEMPT(voluntary) ... [ 13.233125] Call Trace: [ 13.233126] <TASK> [ 13.233127] dump_stack_lvl+0x7f/0xc0 [ 13.233132] print_report+0xce/0x610 [ 13.233136] ? kasan_complete_mode_report_info+0x5d/0x1e0 [ 13.233139] ? xe_nvm_init+0x751/0xf10 [xe] ... " v2: drop err goto path. (Alexander) (cherry picked from commit a3187c0c2bbd947ffff97f90d077ac88f9c2a215)
CVE-2026-2247 1 Clickedu 1 Saas Platform 2026-02-18 N/A
SQL injection vulnerability (SQLi) in Clicldeu SaaS, specifically in the generation of reports, which occurs when a previously authenticated remote attacker executes a malicious payload in the URL generated after downloading the student's report card in the ‘Day-to-day’ section from the mobile application. In the URL of the generated PDF, the session token used does not expire, so it remains valid for days after its generation, and unusual characters can be entered after the ‘id_alu’ parameter, resulting in two types of SQLi: boolean-based blind and time-based blind. Exploiting this vulnerability could allow an attacker to access confidential information in the database.
CVE-2026-2101 1 Dassault Systemes 1 Enoviavpm Web Access 2026-02-18 8.7 High
A Reflected Cross-site Scripting (XSS) vulnerability affecting ENOVIAvpm Web Access from ENOVIAvpm Version 1 Release 16 through ENOVIAvpm Version 1 Release 19 allows an attacker to execute arbitrary script code in user's browser session.
CVE-2026-2002 2 Wordpress, Wpmudev 2 Wordpress, Forminator Forms – Contact Form, Payment Form & Custom Form Builder 2026-02-18 4.4 Medium
The Forminator Forms – Contact Form, Payment Form & Custom Form Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the form_name parameter in all versions up to, and including, 1.50.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level access, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. The plugin allows admins to give form management permissions to lower level users, which could make this exploitable by users such as subscribers.
CVE-2026-2001 2 Wordpress, Wpxpo 2 Wordpress, Wowrevenue – Product Bundles & Bulk Discounts 2026-02-18 8.8 High
The WowRevenue plugin for WordPress is vulnerable to unauthorized plugin installation due to a missing capability check in the 'Notice::install_activate_plugin' function in all versions up to, and including, 2.1.3. This makes it possible for authenticated attackers, with subscriber-level access and above, to install arbitrary plugins on the affected site's server which may make remote code execution possible.
CVE-2025-71223 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb/server: fix refcount leak in smb2_open() When ksmbd_vfs_getattr() fails, the reference count of ksmbd_file must be released.
CVE-2026-23192 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: linkwatch: use __dev_put() in callers to prevent UAF After linkwatch_do_dev() calls __dev_put() to release the linkwatch reference, the device refcount may drop to 1. At this point, netdev_run_todo() can proceed (since linkwatch_sync_dev() sees an empty list and returns without blocking), wait for the refcount to become 1 via netdev_wait_allrefs_any(), and then free the device via kobject_put(). This creates a use-after-free when __linkwatch_run_queue() tries to call netdev_unlock_ops() on the already-freed device. Note that adding netdev_lock_ops()/netdev_unlock_ops() pair in netdev_run_todo() before kobject_put() would not work, because netdev_lock_ops() is conditional - it only locks when netdev_need_ops_lock() returns true. If the device doesn't require ops_lock, linkwatch won't hold any lock, and netdev_run_todo() acquiring the lock won't provide synchronization. Fix this by moving __dev_put() from linkwatch_do_dev() to its callers. The device reference logically pairs with de-listing the device, so it's reasonable for the caller that did the de-listing to release it. This allows placing __dev_put() after all device accesses are complete, preventing UAF. The bug can be reproduced by adding mdelay(2000) after linkwatch_do_dev() in __linkwatch_run_queue(), then running: ip tuntap add mode tun name tun_test ip link set tun_test up ip link set tun_test carrier off ip link set tun_test carrier on sleep 0.5 ip tuntap del mode tun name tun_test KASAN report: ================================================================== BUG: KASAN: use-after-free in netdev_need_ops_lock include/net/netdev_lock.h:33 [inline] BUG: KASAN: use-after-free in netdev_unlock_ops include/net/netdev_lock.h:47 [inline] BUG: KASAN: use-after-free in __linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245 Read of size 8 at addr ffff88804de5c008 by task kworker/u32:10/8123 CPU: 0 UID: 0 PID: 8123 Comm: kworker/u32:10 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Workqueue: events_unbound linkwatch_event Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x100/0x190 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x156/0x4c9 mm/kasan/report.c:482 kasan_report+0xdf/0x1a0 mm/kasan/report.c:595 netdev_need_ops_lock include/net/netdev_lock.h:33 [inline] netdev_unlock_ops include/net/netdev_lock.h:47 [inline] __linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245 linkwatch_event+0x8f/0xc0 net/core/link_watch.c:304 process_one_work+0x9c2/0x1840 kernel/workqueue.c:3257 process_scheduled_works kernel/workqueue.c:3340 [inline] worker_thread+0x5da/0xe40 kernel/workqueue.c:3421 kthread+0x3b3/0x730 kernel/kthread.c:463 ret_from_fork+0x754/0xaf0 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246 </TASK> ==================================================================
CVE-2026-23198 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: Don't clobber irqfd routing type when deassigning irqfd When deassigning a KVM_IRQFD, don't clobber the irqfd's copy of the IRQ's routing entry as doing so breaks kvm_arch_irq_bypass_del_producer() on x86 and arm64, which explicitly look for KVM_IRQ_ROUTING_MSI. Instead, to handle a concurrent routing update, verify that the irqfd is still active before consuming the routing information. As evidenced by the x86 and arm64 bugs, and another bug in kvm_arch_update_irqfd_routing() (see below), clobbering the entry type without notifying arch code is surprising and error prone. As a bonus, checking that the irqfd is active provides a convenient location for documenting _why_ KVM must not consume the routing entry for an irqfd that is in the process of being deassigned: once the irqfd is deleted from the list (which happens *before* the eventfd is detached), it will no longer receive updates via kvm_irq_routing_update(), and so KVM could deliver an event using stale routing information (relative to KVM_SET_GSI_ROUTING returning to userspace). As an even better bonus, explicitly checking for the irqfd being active fixes a similar bug to the one the clobbering is trying to prevent: if an irqfd is deactivated, and then its routing is changed, kvm_irq_routing_update() won't invoke kvm_arch_update_irqfd_routing() (because the irqfd isn't in the list). And so if the irqfd is in bypass mode, IRQs will continue to be posted using the old routing information. As for kvm_arch_irq_bypass_del_producer(), clobbering the routing type results in KVM incorrectly keeping the IRQ in bypass mode, which is especially problematic on AMD as KVM tracks IRQs that are being posted to a vCPU in a list whose lifetime is tied to the irqfd. Without the help of KASAN to detect use-after-free, the most common sympton on AMD is a NULL pointer deref in amd_iommu_update_ga() due to the memory for irqfd structure being re-allocated and zeroed, resulting in irqfd->irq_bypass_data being NULL when read by avic_update_iommu_vcpu_affinity(): BUG: kernel NULL pointer dereference, address: 0000000000000018 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 40cf2b9067 P4D 40cf2b9067 PUD 408362a067 PMD 0 Oops: Oops: 0000 [#1] SMP CPU: 6 UID: 0 PID: 40383 Comm: vfio_irq_test Tainted: G U W O 6.19.0-smp--5dddc257e6b2-irqfd #31 NONE Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025 RIP: 0010:amd_iommu_update_ga+0x19/0xe0 Call Trace: <TASK> avic_update_iommu_vcpu_affinity+0x3d/0x90 [kvm_amd] __avic_vcpu_load+0xf4/0x130 [kvm_amd] kvm_arch_vcpu_load+0x89/0x210 [kvm] vcpu_load+0x30/0x40 [kvm] kvm_arch_vcpu_ioctl_run+0x45/0x620 [kvm] kvm_vcpu_ioctl+0x571/0x6a0 [kvm] __se_sys_ioctl+0x6d/0xb0 do_syscall_64+0x6f/0x9d0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x46893b </TASK> ---[ end trace 0000000000000000 ]--- If AVIC is inhibited when the irfd is deassigned, the bug will manifest as list corruption, e.g. on the next irqfd assignment. list_add corruption. next->prev should be prev (ffff8d474d5cd588), but was 0000000000000000. (next=ffff8d8658f86530). ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:31! Oops: invalid opcode: 0000 [#1] SMP CPU: 128 UID: 0 PID: 80818 Comm: vfio_irq_test Tainted: G U W O 6.19.0-smp--f19dc4d680ba-irqfd #28 NONE Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025 RIP: 0010:__list_add_valid_or_report+0x97/0xc0 Call Trace: <TASK> avic_pi_update_irte+0x28e/0x2b0 [kvm_amd] kvm_pi_update_irte+0xbf/0x190 [kvm] kvm_arch_irq_bypass_add_producer+0x72/0x90 [kvm] irq_bypass_register_consumer+0xcd/0x170 [irqbypa ---truncated---
CVE-2026-23182 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: tegra: Fix a memory leak in tegra_slink_probe() In tegra_slink_probe(), when platform_get_irq() fails, it directly returns from the function with an error code, which causes a memory leak. Replace it with a goto label to ensure proper cleanup.
CVE-2026-23190 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: amd: fix memory leak in acp3x pdm dma ops
CVE-2025-71224 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: ocb: skip rx_no_sta when interface is not joined ieee80211_ocb_rx_no_sta() assumes a valid channel context, which is only present after JOIN_OCB. RX may run before JOIN_OCB is executed, in which case the OCB interface is not operational. Skip RX peer handling when the interface is not joined to avoid warnings in the RX path.
CVE-2025-32058 1 Bosch 1 Infotainment System Ecu 2026-02-18 9.3 Critical
The Infotainment ECU manufactured by Bosch uses a RH850 module for CAN communication. RH850 is connected to infotainment over the INC interface through a custom protocol. There is a vulnerability during processing requests of this protocol on the V850 side which allows an attacker with code execution on the infotainment main SoC to perform code execution on the RH850 module and subsequently send arbitrary CAN messages over the connected CAN bus. First identified on Nissan Leaf ZE1 manufactured in 2020.
CVE-2025-71203 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: riscv: Sanitize syscall table indexing under speculation The syscall number is a user-controlled value used to index into the syscall table. Use array_index_nospec() to clamp this value after the bounds check to prevent speculative out-of-bounds access and subsequent data leakage via cache side channels.
CVE-2025-71220 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb/server: call ksmbd_session_rpc_close() on error path in create_smb2_pipe() When ksmbd_iov_pin_rsp() fails, we should call ksmbd_session_rpc_close().