Search

Search Results (333505 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-11737 2 Kurudrive, Wordpress 2 Vk All In One Expansion Unit, Wordpress 2026-02-18 6.4 Medium
The VK All in One Expansion Unit plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'vkExUnit_sns_title' parameter in all versions up to, and including, 9.112.3 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-59793 1 Rocketsoftware 1 Trufusion Enterprise 2026-02-18 N/A
Rocket TRUfusion Enterprise through 7.10.5 exposes the endpoint at /axis2/services/WsPortalV6UpDwAxis2Impl to authenticated users to be able to upload files. However, the application doesn't properly sanitize the jobDirectory parameter, which allows path traversal sequences to be included. This allows writing files to arbitrary local filesystem locations and may subsequently lead to remote code execution.
CVE-2025-59920 1 Systems At Work 1 Time At Work 2026-02-18 N/A
When hours are entered in time@work, version 7.0.5, it performs a query to display the projects assigned to the user. If the query URL is copied and opened in a new browser window, the ‘IDClient’ parameter is vulnerable to a blind authenticated SQL injection. If the request is made with the TWAdmin user with the sysadmin role enabled, exploiting the vulnerability will allow commands to be executed on the system; if the user does not belong to the sysadmin role, they will still be able to query data from the database.
CVE-2025-27898 1 Ibm 1 Db2 Recovery Expert For Luw 2026-02-18 6.3 Medium
IBM DB2 Recovery Expert for LUW 5.5 Interim Fix 002 does not invalidate session after a timeout which could allow an authenticated user to impersonate another user on the system.
CVE-2025-71237 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: nilfs2: Fix potential block overflow that cause system hang When a user executes the FITRIM command, an underflow can occur when calculating nblocks if end_block is too small. Since nblocks is of type sector_t, which is u64, a negative nblocks value will become a very large positive integer. This ultimately leads to the block layer function __blkdev_issue_discard() taking an excessively long time to process the bio chain, and the ns_segctor_sem lock remains held for a long period. This prevents other tasks from acquiring the ns_segctor_sem lock, resulting in the hang reported by syzbot in [1]. If the ending block is too small, typically if it is smaller than 4KiB range, depending on the usage of the segment 0, it may be possible to attempt a discard request beyond the device size causing the hang. Exiting successfully and assign the discarded size (0 in this case) to range->len. Although the start and len values in the user input range are too small, a conservative strategy is adopted here to safely ignore them, which is equivalent to a no-op; it will not perform any trimming and will not throw an error. [1] task:segctord state:D stack:28968 pid:6093 tgid:6093 ppid:2 task_flags:0x200040 flags:0x00080000 Call Trace: rwbase_write_lock+0x3dd/0x750 kernel/locking/rwbase_rt.c:272 nilfs_transaction_lock+0x253/0x4c0 fs/nilfs2/segment.c:357 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2569 [inline] nilfs_segctor_thread+0x6ec/0xe00 fs/nilfs2/segment.c:2684 [ryusuke: corrected part of the commit message about the consequences]
CVE-2026-23211 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm, swap: restore swap_space attr aviod kernel panic commit 8b47299a411a ("mm, swap: mark swap address space ro and add context debug check") made the swap address space read-only. It may lead to kernel panic if arch_prepare_to_swap returns a failure under heavy memory pressure as follows, el1_abort+0x40/0x64 el1h_64_sync_handler+0x48/0xcc el1h_64_sync+0x84/0x88 errseq_set+0x4c/0xb8 (P) __filemap_set_wb_err+0x20/0xd0 shrink_folio_list+0xc20/0x11cc evict_folios+0x1520/0x1be4 try_to_shrink_lruvec+0x27c/0x3dc shrink_one+0x9c/0x228 shrink_node+0xb3c/0xeac do_try_to_free_pages+0x170/0x4f0 try_to_free_pages+0x334/0x534 __alloc_pages_direct_reclaim+0x90/0x158 __alloc_pages_slowpath+0x334/0x588 __alloc_frozen_pages_noprof+0x224/0x2fc __folio_alloc_noprof+0x14/0x64 vma_alloc_zeroed_movable_folio+0x34/0x44 do_pte_missing+0xad4/0x1040 handle_mm_fault+0x4a4/0x790 do_page_fault+0x288/0x5f8 do_translation_fault+0x38/0x54 do_mem_abort+0x54/0xa8 Restore swap address space as not ro to avoid the panic.
CVE-2026-23212 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: annotate data-races around slave->last_rx slave->last_rx and slave->target_last_arp_rx[...] can be read and written locklessly. Add READ_ONCE() and WRITE_ONCE() annotations. syzbot reported: BUG: KCSAN: data-race in bond_rcv_validate / bond_rcv_validate write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 1: bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335 bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533 __netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039 __netif_receive_skb_one_core net/core/dev.c:6150 [inline] __netif_receive_skb+0x59/0x270 net/core/dev.c:6265 netif_receive_skb_internal net/core/dev.c:6351 [inline] netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410 ... write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 0: bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335 bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533 __netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039 __netif_receive_skb_one_core net/core/dev.c:6150 [inline] __netif_receive_skb+0x59/0x270 net/core/dev.c:6265 netif_receive_skb_internal net/core/dev.c:6351 [inline] netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410 br_netif_receive_skb net/bridge/br_input.c:30 [inline] NF_HOOK include/linux/netfilter.h:318 [inline] ... value changed: 0x0000000100005365 -> 0x0000000100005366
CVE-2026-23215 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: x86/vmware: Fix hypercall clobbers Fedora QA reported the following panic: BUG: unable to handle page fault for address: 0000000040003e54 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20251119-3.fc43 11/19/2025 RIP: 0010:vmware_hypercall4.constprop.0+0x52/0x90 .. Call Trace: vmmouse_report_events+0x13e/0x1b0 psmouse_handle_byte+0x15/0x60 ps2_interrupt+0x8a/0xd0 ... because the QEMU VMware mouse emulation is buggy, and clears the top 32 bits of %rdi that the kernel kept a pointer in. The QEMU vmmouse driver saves and restores the register state in a "uint32_t data[6];" and as a result restores the state with the high bits all cleared. RDI originally contained the value of a valid kernel stack address (0xff5eeb3240003e54). After the vmware hypercall it now contains 0x40003e54, and we get a page fault as a result when it is dereferenced. The proper fix would be in QEMU, but this works around the issue in the kernel to keep old setups working, when old kernels had not happened to keep any state in %rdi over the hypercall. In theory this same issue exists for all the hypercalls in the vmmouse driver; in practice it has only been seen with vmware_hypercall3() and vmware_hypercall4(). For now, just mark RDI/RSI as clobbered for those two calls. This should have a minimal effect on code generation overall as it should be rare for the compiler to want to make RDI/RSI live across hypercalls.
CVE-2026-23216 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: target: iscsi: Fix use-after-free in iscsit_dec_conn_usage_count() In iscsit_dec_conn_usage_count(), the function calls complete() while holding the conn->conn_usage_lock. As soon as complete() is invoked, the waiter (such as iscsit_close_connection()) may wake up and proceed to free the iscsit_conn structure. If the waiter frees the memory before the current thread reaches spin_unlock_bh(), it results in a KASAN slab-use-after-free as the function attempts to release a lock within the already-freed connection structure. Fix this by releasing the spinlock before calling complete().
CVE-2026-23220 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix infinite loop caused by next_smb2_rcv_hdr_off reset in error paths The problem occurs when a signed request fails smb2 signature verification check. In __process_request(), if check_sign_req() returns an error, set_smb2_rsp_status(work, STATUS_ACCESS_DENIED) is called. set_smb2_rsp_status() set work->next_smb2_rcv_hdr_off as zero. By resetting next_smb2_rcv_hdr_off to zero, the pointer to the next command in the chain is lost. Consequently, is_chained_smb2_message() continues to point to the same request header instead of advancing. If the header's NextCommand field is non-zero, the function returns true, causing __handle_ksmbd_work() to repeatedly process the same failed request in an infinite loop. This results in the kernel log being flooded with "bad smb2 signature" messages and high CPU usage. This patch fixes the issue by changing the return value from SERVER_HANDLER_CONTINUE to SERVER_HANDLER_ABORT. This ensures that the processing loop terminates immediately rather than attempting to continue from an invalidated offset.
CVE-2026-23221 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bus: fsl-mc: fix use-after-free in driver_override_show() The driver_override_show() function reads the driver_override string without holding the device_lock. However, driver_override_store() uses driver_set_override(), which modifies and frees the string while holding the device_lock. This can result in a concurrent use-after-free if the string is freed by the store function while being read by the show function. Fix this by holding the device_lock around the read operation.
CVE-2026-23222 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: omap - Allocate OMAP_CRYPTO_FORCE_COPY scatterlists correctly The existing allocation of scatterlists in omap_crypto_copy_sg_lists() was allocating an array of scatterlist pointers, not scatterlist objects, resulting in a 4x too small allocation. Use sizeof(*new_sg) to get the correct object size.
CVE-2026-23224 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: erofs: fix UAF issue for file-backed mounts w/ directio option [ 9.269940][ T3222] Call trace: [ 9.269948][ T3222] ext4_file_read_iter+0xac/0x108 [ 9.269979][ T3222] vfs_iocb_iter_read+0xac/0x198 [ 9.269993][ T3222] erofs_fileio_rq_submit+0x12c/0x180 [ 9.270008][ T3222] erofs_fileio_submit_bio+0x14/0x24 [ 9.270030][ T3222] z_erofs_runqueue+0x834/0x8ac [ 9.270054][ T3222] z_erofs_read_folio+0x120/0x220 [ 9.270083][ T3222] filemap_read_folio+0x60/0x120 [ 9.270102][ T3222] filemap_fault+0xcac/0x1060 [ 9.270119][ T3222] do_pte_missing+0x2d8/0x1554 [ 9.270131][ T3222] handle_mm_fault+0x5ec/0x70c [ 9.270142][ T3222] do_page_fault+0x178/0x88c [ 9.270167][ T3222] do_translation_fault+0x38/0x54 [ 9.270183][ T3222] do_mem_abort+0x54/0xac [ 9.270208][ T3222] el0_da+0x44/0x7c [ 9.270227][ T3222] el0t_64_sync_handler+0x5c/0xf4 [ 9.270253][ T3222] el0t_64_sync+0x1bc/0x1c0 EROFS may encounter above panic when enabling file-backed mount w/ directio mount option, the root cause is it may suffer UAF in below race condition: - z_erofs_read_folio wq s_dio_done_wq - z_erofs_runqueue - erofs_fileio_submit_bio - erofs_fileio_rq_submit - vfs_iocb_iter_read - ext4_file_read_iter - ext4_dio_read_iter - iomap_dio_rw : bio was submitted and return -EIOCBQUEUED - dio_aio_complete_work - dio_complete - dio->iocb->ki_complete (erofs_fileio_ki_complete()) - kfree(rq) : it frees iocb, iocb.ki_filp can be UAF in file_accessed(). - file_accessed : access NULL file point Introduce a reference count in struct erofs_fileio_rq, and initialize it as two, both erofs_fileio_ki_complete() and erofs_fileio_rq_submit() will decrease reference count, the last one decreasing the reference count to zero will free rq.
CVE-2026-23213 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Disable MMIO access during SMU Mode 1 reset During Mode 1 reset, the ASIC undergoes a reset cycle and becomes temporarily inaccessible via PCIe. Any attempt to access MMIO registers during this window (e.g., from interrupt handlers or other driver threads) can result in uncompleted PCIe transactions, leading to NMI panics or system hangs. To prevent this, set the `no_hw_access` flag to true immediately after triggering the reset. This signals other driver components to skip register accesses while the device is offline. A memory barrier `smp_mb()` is added to ensure the flag update is globally visible to all cores before the driver enters the sleep/wait state. (cherry picked from commit 7edb503fe4b6d67f47d8bb0dfafb8e699bb0f8a4)
CVE-2026-2495 2 Qdonow, Wordpress 2 Wpnakama – Team And Multi-client Collaboration, Editorial And Project Management, Wordpress 2026-02-18 7.5 High
The WPNakama – Team and multi-Client Collaboration, Editorial and Project Management plugin for WordPress is vulnerable to SQL Injection via the 'order' parameter of the '/wp-json/WPNakama/v1/boards' REST API endpoint in all versions up to, and including, 0.6.5. This is due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
CVE-2026-23217 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: riscv: trace: fix snapshot deadlock with sbi ecall If sbi_ecall.c's functions are traceable, echo "__sbi_ecall:snapshot" > /sys/kernel/tracing/set_ftrace_filter may get the kernel into a deadlock. (Functions in sbi_ecall.c are excluded from tracing if CONFIG_RISCV_ALTERNATIVE_EARLY is set.) __sbi_ecall triggers a snapshot of the ringbuffer. The snapshot code raises an IPI interrupt, which results in another call to __sbi_ecall and another snapshot... All it takes to get into this endless loop is one initial __sbi_ecall. On RISC-V systems without SSTC extension, the clock events in timer-riscv.c issue periodic sbi ecalls, making the problem easy to trigger. Always exclude the sbi_ecall.c functions from tracing to fix the potential deadlock. sbi ecalls can easiliy be logged via trace events, excluding ecall functions from function tracing is not a big limitation.
CVE-2026-23223 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: xfs: fix UAF in xchk_btree_check_block_owner We cannot dereference bs->cur when trying to determine if bs->cur aliases bs->sc->sa.{bno,rmap}_cur after the latter has been freed. Fix this by sampling before type before any freeing could happen. The correct temporal ordering was broken when we removed xfs_btnum_t.
CVE-2026-23595 1 Hpe 1 Aruba Networking Private 5g Core 2026-02-18 8.8 High
An authentication bypass in the application API allows an unauthorized administrative account to be created. A remote attacker could exploit this vulnerability to create privileged user accounts. Successful exploitation could allow an attacker to gain administrative access, modify system configurations, and access or manipulate sensitive data.
CVE-2026-23597 1 Hpe 1 Aruba Networking Private 5g Core 2026-02-18 6.5 Medium
Vulnerabilities in the API error handling of an HPE Aruba Networking 5G Core server API could allow an unauthenticated remote attacker to obtain sensitive information. Successful exploitation could allow an attacker to access details such as user accounts, roles, and system configuration, as well as to gain insight into internal services and workflows, increasing the risk of unauthorized access and elevated privileges when combined with other vulnerabilities.
CVE-2026-23598 1 Hpe 1 Aruba Networking Private 5g Core 2026-02-18 6.5 Medium
Vulnerabilities in the API error handling of an HPE Aruba Networking 5G Core server API could allow an unauthenticated remote attacker to obtain sensitive information. Successful exploitation could allow an attacker to access details such as user accounts, roles, and system configuration, as well as to gain insight into internal services and workflows, increasing the risk of unauthorized access and elevated privileges when combined with other vulnerabilities.