| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Enterprise Cloud Database developed by Ragic has a Arbitrary File Read vulnerability, allowing unauthenticated remote attackers to exploit Relative Path Traversal to download arbitrary system files. |
| Enterprise Cloud Database developed by Ragic has a Hard-coded Cryptographic Key vulnerability, allowing unauthenticated remote attackers to exploit the fixed key to generate verification information and log into the system as any user. |
| Versa SASE Client for Windows versions released between 7.8.7 and 7.9.4 contain a local privilege escalation vulnerability in the audit log export functionality. The client communicates user-controlled file paths to a privileged service, which performs file system operations without impersonating the requesting user. Due to improper privilege handling and a time-of-check time-of-use race condition combined with symbolic link and mount point manipulation, a local authenticated attacker can coerce the service into deleting arbitrary directories with SYSTEM privileges. This can be exploited to delete protected system folders such as C:\\Config.msi and subsequently achieve execution as NT AUTHORITY\\SYSTEM via MSI rollback techniques. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in Tormorten WP Microdata allows Stored XSS.This issue affects WP Microdata: from n/a through 1.0. |
| Reflected cross-site scripting (XSS) vulnerability in ClinCapture EDC 3.0 and 2.2.3, allowing an unauthenticated remote attacker to execute JavaScript code in the context of the victim's browser. |
| Authentication bypass vulnerability in Xiongmai XM530 IP cameras on Firmware V5.00.R02.000807D8.10010.346624.S.ONVIF 21.06 allows unauthenticated remote attackers to access sensitive device information and live video streams. The ONVIF implementation fails to enforce authentication on 31 critical endpoints, enabling direct unauthorized video stream access. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Fix stack_depot usage
Add missing stack_depot_init() call when CONFIG_DRM_XE_DEBUG_GUC is
enabled to fix the following call stack:
[] BUG: kernel NULL pointer dereference, address: 0000000000000000
[] Workqueue: drm_sched_run_job_work [gpu_sched]
[] RIP: 0010:stack_depot_save_flags+0x172/0x870
[] Call Trace:
[] <TASK>
[] fast_req_track+0x58/0xb0 [xe]
(cherry picked from commit 64fdf496a6929a0a194387d2bb5efaf5da2b542f) |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: stratix10-svc: fix bug in saving controller data
Fix the incorrect usage of platform_set_drvdata and dev_set_drvdata. They
both are of the same data and overrides each other. This resulted in the
rmmod of the svc driver to fail and throw a kernel panic for kthread_stop
and fifo free. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix WARN_ON in tracing_buffers_mmap_close for split VMAs
When a VMA is split (e.g., by partial munmap or MAP_FIXED), the kernel
calls vm_ops->close on each portion. For trace buffer mappings, this
results in ring_buffer_unmap() being called multiple times while
ring_buffer_map() was only called once.
This causes ring_buffer_unmap() to return -ENODEV on subsequent calls
because user_mapped is already 0, triggering a WARN_ON.
Trace buffer mappings cannot support partial mappings because the ring
buffer structure requires the complete buffer including the meta page.
Fix this by adding a may_split callback that returns -EINVAL to prevent
VMA splits entirely. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: accel: bmc150: Fix irq assumption regression
The code in bmc150-accel-core.c unconditionally calls
bmc150_accel_set_interrupt() in the iio_buffer_setup_ops,
such as on the runtime PM resume path giving a kernel
splat like this if the device has no interrupts:
Unable to handle kernel NULL pointer dereference at virtual
address 00000001 when read
PC is at bmc150_accel_set_interrupt+0x98/0x194
LR is at __pm_runtime_resume+0x5c/0x64
(...)
Call trace:
bmc150_accel_set_interrupt from bmc150_accel_buffer_postenable+0x40/0x108
bmc150_accel_buffer_postenable from __iio_update_buffers+0xbe0/0xcbc
__iio_update_buffers from enable_store+0x84/0xc8
enable_store from kernfs_fop_write_iter+0x154/0x1b4
This bug seems to have been in the driver since the beginning,
but it only manifests recently, I do not know why.
Store the IRQ number in the state struct, as this is a common
pattern in other drivers, then use this to determine if we have
IRQ support or not. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix possible deadlock in the deferred_irq_workfn()
For PREEMPT_RT=y kernels, the deferred_irq_workfn() is executed in
the per-cpu irq_work/* task context and not disable-irq, if the rq
returned by container_of() is current CPU's rq, the following scenarios
may occur:
lock(&rq->__lock);
<Interrupt>
lock(&rq->__lock);
This commit use IRQ_WORK_INIT_HARD() to replace init_irq_work() to
initialize rq->scx.deferred_irq_work, make the deferred_irq_workfn()
is always invoked in hard-irq context. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd/pmc: Add support for Van Gogh SoC
The ROG Xbox Ally (non-X) SoC features a similar architecture to the
Steam Deck. While the Steam Deck supports S3 (s2idle causes a crash),
this support was dropped by the Xbox Ally which only S0ix suspend.
Since the handler is missing here, this causes the device to not suspend
and the AMD GPU driver to crash while trying to resume afterwards due to
a power hang. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: pcl818: fix null-ptr-deref in pcl818_ai_cancel()
Syzbot identified an issue [1] in pcl818_ai_cancel(), which stems from
the fact that in case of early device detach via pcl818_detach(),
subdevice dev->read_subdev may not have initialized its pointer to
&struct comedi_async as intended. Thus, any such dereferencing of
&s->async->cmd will lead to general protection fault and kernel crash.
Mitigate this problem by removing a call to pcl818_ai_cancel() from
pcl818_detach() altogether. This way, if the subdevice setups its
support for async commands, everything async-related will be
handled via subdevice's own ->cancel() function in
comedi_device_detach_locked() even before pcl818_detach(). If no
support for asynchronous commands is provided, there is no need
to cancel anything either.
[1] Syzbot crash:
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f]
CPU: 1 UID: 0 PID: 6050 Comm: syz.0.18 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025
RIP: 0010:pcl818_ai_cancel+0x69/0x3f0 drivers/comedi/drivers/pcl818.c:762
...
Call Trace:
<TASK>
pcl818_detach+0x66/0xd0 drivers/comedi/drivers/pcl818.c:1115
comedi_device_detach_locked+0x178/0x750 drivers/comedi/drivers.c:207
do_devconfig_ioctl drivers/comedi/comedi_fops.c:848 [inline]
comedi_unlocked_ioctl+0xcde/0x1020 drivers/comedi/comedi_fops.c:2178
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
... |
| In the Linux kernel, the following vulnerability has been resolved:
locking/spinlock/debug: Fix data-race in do_raw_write_lock
KCSAN reports:
BUG: KCSAN: data-race in do_raw_write_lock / do_raw_write_lock
write (marked) to 0xffff800009cf504c of 4 bytes by task 1102 on cpu 1:
do_raw_write_lock+0x120/0x204
_raw_write_lock_irq
do_exit
call_usermodehelper_exec_async
ret_from_fork
read to 0xffff800009cf504c of 4 bytes by task 1103 on cpu 0:
do_raw_write_lock+0x88/0x204
_raw_write_lock_irq
do_exit
call_usermodehelper_exec_async
ret_from_fork
value changed: 0xffffffff -> 0x00000001
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 1103 Comm: kworker/u4:1 6.1.111
Commit 1a365e822372 ("locking/spinlock/debug: Fix various data races") has
adressed most of these races, but seems to be not consistent/not complete.
>From do_raw_write_lock() only debug_write_lock_after() part has been
converted to WRITE_ONCE(), but not debug_write_lock_before() part.
Do it now. |
| Fedify is a TypeScript library for building federated server apps powered by ActivityPub. Prior to versions 1.6.13, 1.7.14, 1.8.15, and 1.9.2, a Regular Expression Denial of Service (ReDoS) vulnerability exists in Fedify's document loader. The HTML parsing regex at packages/fedify/src/runtime/docloader.ts:259 contains nested quantifiers that cause catastrophic backtracking when processing maliciously crafted HTML responses. This issue has been patched in versions 1.6.13, 1.7.14, 1.8.15, and 1.9.2. |
| KEDA is a Kubernetes-based Event Driven Autoscaling component. Prior to versions 2.17.3 and 2.18.3, an Arbitrary File Read vulnerability has been identified in KEDA, potentially affecting any KEDA resource that uses TriggerAuthentication to configure HashiCorp Vault authentication. The vulnerability stems from an incorrect or insufficient path validation when loading the Service Account Token specified in spec.hashiCorpVault.credential.serviceAccount. An attacker with permissions to create or modify a TriggerAuthentication resource can exfiltrate the content of any file from the node's filesystem (where the KEDA pod resides) by directing the file's content to a server under their control, as part of the Vault authentication request. The potential impact includes the exfiltration of sensitive system information, such as secrets, keys, or the content of files like /etc/passwd. This issue has been patched in versions 2.17.3 and 2.18.3. |
| FastAPI Users allows users to quickly add a registration and authentication system to their FastAPI project. Prior to version 15.0.2, the OAuth login state tokens are completely stateless and carry no per-request entropy or any data that could link them to the session that initiated the OAuth flow. `generate_state_token()` is always called with an empty `state_data` dict, so the resulting JWT only contains the fixed audience claim plus an expiration timestamp. On callback, the library merely checks that the JWT verifies under `state_secret` and is unexpired; there is no attempt to match the state value to the browser that initiated the OAuth request, no correlation cookie, and no server-side cache. Any attacker can hit `/authorize`, capture the server-generated state, finish the upstream OAuth flow with their own provider account, and then trick a victim into loading `.../callback?code=<attacker_code>&state=<attacker_state>`. Because the state JWT is valid for any client for \~1 hour, the victim’s browser will complete the flow. This leads to login CSRF. Depending on the app’s logic, the login CSRF can lead to an account takeover of the victim account or to the victim user getting logged in to the attacker's account. Version 15.0.2 contains a patch for the issue. |
| The WP JobHunt plugin for WordPress, used by the JobCareer theme, is vulnerable to unauthorized modification of data due to a missing capability check on the 'cs_update_application_status_callback' function in all versions up to, and including, 7.7. This makes it possible for authenticated attackers, with Candidate-level access and above, to inject cross-site scripting into the 'status' parameter of applied jobs for any user. |
| A buffer overflow vulnerability exists in the ONVIF XML parser of Tapo C200 V3. An unauthenticated attacker on the same local network segment can send specially crafted SOAP XML requests, causing memory overflow and device crash, resulting in denial-of-service (DoS). |
| In the Linux kernel, the following vulnerability has been resolved:
atm/fore200e: Fix possible data race in fore200e_open()
Protect access to fore200e->available_cell_rate with rate_mtx lock in the
error handling path of fore200e_open() to prevent a data race.
The field fore200e->available_cell_rate is a shared resource used to track
available bandwidth. It is concurrently accessed by fore200e_open(),
fore200e_close(), and fore200e_change_qos().
In fore200e_open(), the lock rate_mtx is correctly held when subtracting
vcc->qos.txtp.max_pcr from available_cell_rate to reserve bandwidth.
However, if the subsequent call to fore200e_activate_vcin() fails, the
function restores the reserved bandwidth by adding back to
available_cell_rate without holding the lock.
This introduces a race condition because available_cell_rate is a global
device resource shared across all VCCs. If the error path in
fore200e_open() executes concurrently with operations like
fore200e_close() or fore200e_change_qos() on other VCCs, a
read-modify-write race occurs.
Specifically, the error path reads the rate without the lock. If another
CPU acquires the lock and modifies the rate (e.g., releasing bandwidth in
fore200e_close()) between this read and the subsequent write, the error
path will overwrite the concurrent update with a stale value. This results
in incorrect bandwidth accounting. |