| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: fix race condition on death_list
Rust Binder contains the following unsafe operation:
// SAFETY: A `NodeDeath` is never inserted into the death list
// of any node other than its owner, so it is either in this
// death list or in no death list.
unsafe { node_inner.death_list.remove(self) };
This operation is unsafe because when touching the prev/next pointers of
a list element, we have to ensure that no other thread is also touching
them in parallel. If the node is present in the list that `remove` is
called on, then that is fine because we have exclusive access to that
list. If the node is not in any list, then it's also ok. But if it's
present in a different list that may be accessed in parallel, then that
may be a data race on the prev/next pointers.
And unfortunately that is exactly what is happening here. In
Node::release, we:
1. Take the lock.
2. Move all items to a local list on the stack.
3. Drop the lock.
4. Iterate the local list on the stack.
Combined with threads using the unsafe remove method on the original
list, this leads to memory corruption of the prev/next pointers. This
leads to crashes like this one:
Unable to handle kernel paging request at virtual address 000bb9841bcac70e
Mem abort info:
ESR = 0x0000000096000044
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000044, ISS2 = 0x00000000
CM = 0, WnR = 1, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[000bb9841bcac70e] address between user and kernel address ranges
Internal error: Oops: 0000000096000044 [#1] PREEMPT SMP
google-cdd 538c004.gcdd: context saved(CPU:1)
item - log_kevents is disabled
Modules linked in: ... rust_binder
CPU: 1 UID: 0 PID: 2092 Comm: kworker/1:178 Tainted: G S W OE 6.12.52-android16-5-g98debd5df505-4k #1 f94a6367396c5488d635708e43ee0c888d230b0b
Tainted: [S]=CPU_OUT_OF_SPEC, [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: MUSTANG PVT 1.0 based on LGA (DT)
Workqueue: events _RNvXs6_NtCsdfZWD8DztAw_6kernel9workqueueINtNtNtB7_4sync3arc3ArcNtNtCs8QPsHWIn21X_16rust_binder_main7process7ProcessEINtB5_15WorkItemPointerKy0_E3runB13_ [rust_binder]
pstate: 23400005 (nzCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder]
lr : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x464/0x11f8 [rust_binder]
sp : ffffffc09b433ac0
x29: ffffffc09b433d30 x28: ffffff8821690000 x27: ffffffd40cbaa448
x26: ffffff8821690000 x25: 00000000ffffffff x24: ffffff88d0376578
x23: 0000000000000001 x22: ffffffc09b433c78 x21: ffffff88e8f9bf40
x20: ffffff88e8f9bf40 x19: ffffff882692b000 x18: ffffffd40f10bf00
x17: 00000000c006287d x16: 00000000c006287d x15: 00000000000003b0
x14: 0000000000000100 x13: 000000201cb79ae0 x12: fffffffffffffff0
x11: 0000000000000000 x10: 0000000000000001 x9 : 0000000000000000
x8 : b80bb9841bcac706 x7 : 0000000000000001 x6 : fffffffebee63f30
x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000004c31 x1 : ffffff88216900c0 x0 : ffffff88e8f9bf00
Call trace:
_RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder bbc172b53665bbc815363b22e97e3f7e3fe971fc]
process_scheduled_works+0x1c4/0x45c
worker_thread+0x32c/0x3e8
kthread+0x11c/0x1c8
ret_from_fork+0x10/0x20
Code: 94218d85 b4000155 a94026a8 d10102a0 (f9000509)
---[ end trace 0000000000000000 ]---
Thus, modify Node::release to pop items directly off the original list. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Don't skip unrelated instruction if INT3/INTO is replaced
When re-injecting a soft interrupt from an INT3, INT0, or (select) INTn
instruction, discard the exception and retry the instruction if the code
stream is changed (e.g. by a different vCPU) between when the CPU
executes the instruction and when KVM decodes the instruction to get the
next RIP.
As effectively predicted by commit 6ef88d6e36c2 ("KVM: SVM: Re-inject
INT3/INTO instead of retrying the instruction"), failure to verify that
the correct INTn instruction was decoded can effectively clobber guest
state due to decoding the wrong instruction and thus specifying the
wrong next RIP.
The bug most often manifests as "Oops: int3" panics on static branch
checks in Linux guests. Enabling or disabling a static branch in Linux
uses the kernel's "text poke" code patching mechanism. To modify code
while other CPUs may be executing that code, Linux (temporarily)
replaces the first byte of the original instruction with an int3 (opcode
0xcc), then patches in the new code stream except for the first byte,
and finally replaces the int3 with the first byte of the new code
stream. If a CPU hits the int3, i.e. executes the code while it's being
modified, then the guest kernel must look up the RIP to determine how to
handle the #BP, e.g. by emulating the new instruction. If the RIP is
incorrect, then this lookup fails and the guest kernel panics.
The bug reproduces almost instantly by hacking the guest kernel to
repeatedly check a static branch[1] while running a drgn script[2] on
the host to constantly swap out the memory containing the guest's TSS.
[1]: https://gist.github.com/osandov/44d17c51c28c0ac998ea0334edf90b5a
[2]: https://gist.github.com/osandov/10e45e45afa29b11e0c7209247afc00b |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: multiq3: sanitize config options in multiq3_attach()
Syzbot identified an issue [1] in multiq3_attach() that induces a
task timeout due to open() or COMEDI_DEVCONFIG ioctl operations,
specifically, in the case of multiq3 driver.
This problem arose when syzkaller managed to craft weird configuration
options used to specify the number of channels in encoder subdevice.
If a particularly great number is passed to s->n_chan in
multiq3_attach() via it->options[2], then multiple calls to
multiq3_encoder_reset() at the end of driver-specific attach() method
will be running for minutes, thus blocking tasks and affected devices
as well.
While this issue is most likely not too dangerous for real-life
devices, it still makes sense to sanitize configuration inputs. Enable
a sensible limit on the number of encoder chips (4 chips max, each
with 2 channels) to stop this behaviour from manifesting.
[1] Syzbot crash:
INFO: task syz.2.19:6067 blocked for more than 143 seconds.
...
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5254 [inline]
__schedule+0x17c4/0x4d60 kernel/sched/core.c:6862
__schedule_loop kernel/sched/core.c:6944 [inline]
schedule+0x165/0x360 kernel/sched/core.c:6959
schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:7016
__mutex_lock_common kernel/locking/mutex.c:676 [inline]
__mutex_lock+0x7e6/0x1350 kernel/locking/mutex.c:760
comedi_open+0xc0/0x590 drivers/comedi/comedi_fops.c:2868
chrdev_open+0x4cc/0x5e0 fs/char_dev.c:414
do_dentry_open+0x953/0x13f0 fs/open.c:965
vfs_open+0x3b/0x340 fs/open.c:1097
... |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: check device's attached status in compat ioctls
Syzbot identified an issue [1] that crashes kernel, seemingly due to
unexistent callback dev->get_valid_routes(). By all means, this should
not occur as said callback must always be set to
get_zero_valid_routes() in __comedi_device_postconfig().
As the crash seems to appear exclusively in i386 kernels, at least,
judging from [1] reports, the blame lies with compat versions
of standard IOCTL handlers. Several of them are modified and
do not use comedi_unlocked_ioctl(). While functionality of these
ioctls essentially copy their original versions, they do not
have required sanity check for device's attached status. This,
in turn, leads to a possibility of calling select IOCTLs on a
device that has not been properly setup, even via COMEDI_DEVCONFIG.
Doing so on unconfigured devices means that several crucial steps
are missed, for instance, specifying dev->get_valid_routes()
callback.
Fix this somewhat crudely by ensuring device's attached status before
performing any ioctls, improving logic consistency between modern
and compat functions.
[1] Syzbot report:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
CR2: ffffffffffffffd6 CR3: 000000006c717000 CR4: 0000000000352ef0
Call Trace:
<TASK>
get_valid_routes drivers/comedi/comedi_fops.c:1322 [inline]
parse_insn+0x78c/0x1970 drivers/comedi/comedi_fops.c:1401
do_insnlist_ioctl+0x272/0x700 drivers/comedi/comedi_fops.c:1594
compat_insnlist drivers/comedi/comedi_fops.c:3208 [inline]
comedi_compat_ioctl+0x810/0x990 drivers/comedi/comedi_fops.c:3273
__do_compat_sys_ioctl fs/ioctl.c:695 [inline]
__se_compat_sys_ioctl fs/ioctl.c:638 [inline]
__ia32_compat_sys_ioctl+0x242/0x370 fs/ioctl.c:638
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
... |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix out-of-bounds read in rtw_get_ie() parser
The Information Element (IE) parser rtw_get_ie() trusted the length
byte of each IE without validating that the IE body (len bytes after
the 2-byte header) fits inside the remaining frame buffer. A malformed
frame can advertise an IE length larger than the available data, causing
the parser to increment its pointer beyond the buffer end. This results
in out-of-bounds reads or, depending on the pattern, an infinite loop.
Fix by validating that (offset + 2 + len) does not exceed the limit
before accepting the IE or advancing to the next element.
This prevents OOB reads and ensures the parser terminates safely on
malformed frames. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix stack buffer overflow in OnAssocReq IE parsing
The Supported Rates IE length from an incoming Association Request frame
was used directly as the memcpy() length when copying into a fixed-size
16-byte stack buffer (supportRate). A malicious station can advertise an
IE length larger than 16 bytes, causing a stack buffer overflow.
Clamp ie_len to the buffer size before copying the Supported Rates IE,
and correct the bounds check when merging Extended Supported Rates to
prevent a second potential overflow.
This prevents kernel stack corruption triggered by malformed association
requests. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix out-of-bounds read in OnBeacon ESR IE parsing
The Extended Supported Rates (ESR) IE handling in OnBeacon accessed
*(p + 1 + ielen) and *(p + 2 + ielen) without verifying that these
offsets lie within the received frame buffer. A malformed beacon with
an ESR IE positioned at the end of the buffer could cause an
out-of-bounds read, potentially triggering a kernel panic.
Add a boundary check to ensure that the ESR IE body and the subsequent
bytes are within the limits of the frame before attempting to access
them.
This prevents OOB reads caused by malformed beacon frames. |
| C&Cm@il developed by HGiga has a SQL Injection vulnerability, allowing unauthenticated remote attackers to inject arbitrary SQL commands to read database contents. |
| C&Cm@il developed by HGiga has a SQL Injection vulnerability, allowing authenticated remote attackers to inject arbitrary SQL commands to read database contents. |
| C&Cm@il developed by HGiga has a Missing Authentication vulnerability, allowing unauthenticated remote attackers to read and modify any user's mail content. |
| A security vulnerability has been detected in code-projects Online Reviewer System 1.0. Affected by this issue is some unknown functionality of the file /system/system/students/assessments/pretest/take/index.php. The manipulation of the argument ID leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed publicly and may be used. |
| A weakness has been identified in code-projects Online Reviewer System 1.0. Affected by this vulnerability is an unknown functionality of the file /system/system/admins/manage/users/btn_functions.php. Executing a manipulation of the argument firstname can lead to cross site scripting. The attack may be performed from remote. The exploit has been made available to the public and could be used for attacks. |
| User credentials are stored using AES‑ECB encryption with a hardcoded key. An unauthenticated remote attacker obtaining the configuration file can decrypt and recover plaintext usernames and passwords, especially when combined with the authentication bypass. |
| An unauthenticated remote attacker can bypass authentication by exploiting insufficient URI validation and using path traversal sequences (e.g., /js/../cgi-bin/post.cgi), gaining unauthorized access to protected CGI endpoints and configuration downloads. |
| Improper length handling when parsing multiple cookie fields (including TRACKID) allows an unauthenticated remote attacker to send oversized cookie values and trigger a stack buffer overflow, resulting in a denial‑of‑service condition and possible remote code execution. |
| An unauthenticated remote attacker can send a crafted HTTP request containing an overly long SESSIONID cookie. This can trigger a stack buffer overflow in the modified lighttpd server, causing it to crash and potentially enabling remote code execution due to missing stack protections. |
| A security flaw has been discovered in code-projects Online Reviewer System 1.0. Affected is an unknown function of the file /login/index.php of the component Login. Performing a manipulation of the argument Username results in sql injection. The attack is possible to be carried out remotely. The exploit has been released to the public and may be used for attacks. |
| A vulnerability was identified in code-projects Online Reviewer System 1.0. This impacts an unknown function of the file /system/system/admins/assessments/pretest/btn_functions.php. Such manipulation of the argument difficulty_id leads to sql injection. The attack can be executed remotely. The exploit is publicly available and might be used. |
| Products provided by Oki Electric Industry Co., Ltd. and its OEM products (Ricoh Co., Ltd., Murata Machinery, Ltd.) register Windows services with unquoted file paths. A user with the write permission on the root directory of the system drive may execute arbitrary code with SYSTEM privilege. |
| GitLab has remediated a vulnerability in the Duo Workflow Service component of GitLab AI Gateway affecting all versions of the AI Gateway from 18.1.6, 18.2.6, 18.3.1 to 18.6.1, 18.7.0, and 18.8.0 in which AI Gateway was vulnerable to insecure template expansion of user supplied data via crafted Duo Agent Platform Flow definitions. This vulnerability could be used to cause Denial of Service or gain code execution on the Gateway. This has been fixed in versions 18.6.2, 18.7.1, and 18.8.1 of the GitLab AI Gateway. |