| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
pNFS: Fix a deadlock when returning a delegation during open()
Ben Coddington reports seeing a hang in the following stack trace:
0 [ffffd0b50e1774e0] __schedule at ffffffff9ca05415
1 [ffffd0b50e177548] schedule at ffffffff9ca05717
2 [ffffd0b50e177558] bit_wait at ffffffff9ca061e1
3 [ffffd0b50e177568] __wait_on_bit at ffffffff9ca05cfb
4 [ffffd0b50e1775c8] out_of_line_wait_on_bit at ffffffff9ca05ea5
5 [ffffd0b50e177618] pnfs_roc at ffffffffc154207b [nfsv4]
6 [ffffd0b50e1776b8] _nfs4_proc_delegreturn at ffffffffc1506586 [nfsv4]
7 [ffffd0b50e177788] nfs4_proc_delegreturn at ffffffffc1507480 [nfsv4]
8 [ffffd0b50e1777f8] nfs_do_return_delegation at ffffffffc1523e41 [nfsv4]
9 [ffffd0b50e177838] nfs_inode_set_delegation at ffffffffc1524a75 [nfsv4]
10 [ffffd0b50e177888] nfs4_process_delegation at ffffffffc14f41dd [nfsv4]
11 [ffffd0b50e1778a0] _nfs4_opendata_to_nfs4_state at ffffffffc1503edf [nfsv4]
12 [ffffd0b50e1778c0] _nfs4_open_and_get_state at ffffffffc1504e56 [nfsv4]
13 [ffffd0b50e177978] _nfs4_do_open at ffffffffc15051b8 [nfsv4]
14 [ffffd0b50e1779f8] nfs4_do_open at ffffffffc150559c [nfsv4]
15 [ffffd0b50e177a80] nfs4_atomic_open at ffffffffc15057fb [nfsv4]
16 [ffffd0b50e177ad0] nfs4_file_open at ffffffffc15219be [nfsv4]
17 [ffffd0b50e177b78] do_dentry_open at ffffffff9c09e6ea
18 [ffffd0b50e177ba8] vfs_open at ffffffff9c0a082e
19 [ffffd0b50e177bd0] dentry_open at ffffffff9c0a0935
The issue is that the delegreturn is being asked to wait for a layout
return that cannot complete because a state recovery was initiated. The
state recovery cannot complete until the open() finishes processing the
delegations it was given.
The solution is to propagate the existing flags that indicate a
non-blocking call to the function pnfs_roc(), so that it knows not to
wait in this situation. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Do not over-allocate ftrace memory
The pg_remaining calculation in ftrace_process_locs() assumes that
ENTRIES_PER_PAGE multiplied by 2^order equals the actual capacity of the
allocated page group. However, ENTRIES_PER_PAGE is PAGE_SIZE / ENTRY_SIZE
(integer division). When PAGE_SIZE is not a multiple of ENTRY_SIZE (e.g.
4096 / 24 = 170 with remainder 16), high-order allocations (like 256 pages)
have significantly more capacity than 256 * 170. This leads to pg_remaining
being underestimated, which in turn makes skip (derived from skipped -
pg_remaining) larger than expected, causing the WARN(skip != remaining)
to trigger.
Extra allocated pages for ftrace: 2 with 654 skipped
WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7295 ftrace_process_locs+0x5bf/0x5e0
A similar problem in ftrace_allocate_records() can result in allocating
too many pages. This can trigger the second warning in
ftrace_process_locs().
Extra allocated pages for ftrace
WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7276 ftrace_process_locs+0x548/0x580
Use the actual capacity of a page group to determine the number of pages
to allocate. Have ftrace_allocate_pages() return the number of allocated
pages to avoid having to calculate it. Use the actual page group capacity
when validating the number of unused pages due to skipped entries.
Drop the definition of ENTRIES_PER_PAGE since it is no longer used. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix a deadlock involving nfs_release_folio()
Wang Zhaolong reports a deadlock involving NFSv4.1 state recovery
waiting on kthreadd, which is attempting to reclaim memory by calling
nfs_release_folio(). The latter cannot make progress due to state
recovery being needed.
It seems that the only safe thing to do here is to kick off a writeback
of the folio, without waiting for completion, or else kicking off an
asynchronous commit. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: Coalesce only linear skb
vsock/virtio common tries to coalesce buffers in rx queue: if a linear skb
(with a spare tail room) is followed by a small skb (length limited by
GOOD_COPY_LEN = 128), an attempt is made to join them.
Since the introduction of MSG_ZEROCOPY support, assumption that a small skb
will always be linear is incorrect. In the zerocopy case, data is lost and
the linear skb is appended with uninitialized kernel memory.
Of all 3 supported virtio-based transports, only loopback-transport is
affected. G2H virtio-transport rx queue operates on explicitly linear skbs;
see virtio_vsock_alloc_linear_skb() in virtio_vsock_rx_fill(). H2G
vhost-transport may allocate non-linear skbs, but only for sizes that are
not considered for coalescence; see PAGE_ALLOC_COSTLY_ORDER in
virtio_vsock_alloc_skb().
Ensure only linear skbs are coalesced. Note that skb_tailroom(last_skb) > 0
guarantees last_skb is linear. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix kernel panic in GET_INSTANCE_ID macro
The GET_INSTANCE_ID macro that caused a kernel panic when accessing sysfs
attributes:
1. Off-by-one error: The loop condition used '<=' instead of '<',
causing access beyond array bounds. Since array indices are 0-based
and go from 0 to instances_count-1, the loop should use '<'.
2. Missing NULL check: The code dereferenced attr_name_kobj->name
without checking if attr_name_kobj was NULL, causing a null pointer
dereference in min_length_show() and other attribute show functions.
The panic occurred when fwupd tried to read BIOS configuration attributes:
Oops: general protection fault [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:min_length_show+0xcf/0x1d0 [hp_bioscfg]
Add a NULL check for attr_name_kobj before dereferencing and corrects
the loop boundary to match the pattern used elsewhere in the driver. |
| Improper Neutralization of Input During Web Page Generation ("Cross-site Scripting") vulnerability in Drupal AT Internet SmartTag allows Cross-Site Scripting (XSS).This issue affects AT Internet SmartTag: from 0.0.0 before 1.0.1. |
| Improper Neutralization of Input During Web Page Generation ("Cross-site Scripting") vulnerability in Drupal AT Internet Piano Analytics allows Cross-Site Scripting (XSS).This issue affects AT Internet Piano Analytics: from 0.0.0 before 1.0.1, from 2.0.0 before 2.3.1. |
| Authentication Bypass Using an Alternate Path or Channel vulnerability in Drupal Microsoft Entra ID SSO Login allows Privilege Escalation.This issue affects Microsoft Entra ID SSO Login: from 0.0.0 before 1.0.4. |
| Incorrect Authorization vulnerability in Drupal Drupal Canvas allows Forceful Browsing.This issue affects Drupal Canvas: from 0.0.0 before 1.0.4. |
| OpenSTAManager is an open source management software for technical assistance and invoicing. In version 2.9.8 and prior, a SQL Injection vulnerability exists in the ajax_complete.php endpoint when handling the get_sedi operation. An authenticated attacker can inject malicious SQL code through the idanagrafica parameter, leading to unauthorized database access. At time of publication, no known patch exists. |
| IBM Db2 Big SQL on Cloud Pak for Data versions 7.6 (on CP4D 4.8), 7.7 (on CP4D 5.0), and 7.8 (on CP4D 5.1) do not properly limit the allocation of system resources. An authenticated user with internal knowledge of the environment could exploit this weakness to cause a denial of service. |
| IBM Jazz Reporting Service could allow an authenticated user on the network to affect the system's performance using complicated queries due to insufficient resource pooling. |
| IBM Jazz Reporting Service could allow an authenticated user on the host network to obtain sensitive information about other projects that reside on the server. |
| The unstructured library provides open-source components for ingesting and pre-processing images and text documents, such as PDFs, HTML, Word docs, and many more. Prior to version 0.18.18, a path traversal vulnerability in the partition_msg function allows an attacker to write or overwrite arbitrary files on the filesystem when processing malicious MSG files with attachments. This issue has been patched in version 0.18.18. |
| A vulnerability in the web-based management interface of Cisco Prime Infrastructure could allow an authenticated, remote attacker to conduct a stored cross-site scripting (XSS) attack against users of the interface of an affected system.
This vulnerability exists because the web-based management interface does not properly validate user-supplied input. An attacker could exploit this vulnerability by inserting malicious code into specific data fields in the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit this vulnerability, an attacker must have valid administrative credentials. |
| cert-manager adds certificates and certificate issuers as resource types in Kubernetes clusters, and simplifies the process of obtaining, renewing and using those certificates. In versions from 1.18.0 to before 1.18.5 and from 1.19.0 to before 1.19.3, the cert-manager-controller performs DNS lookups during ACME DNS-01 processing (for zone discovery and propagation self-checks). By default, these lookups use standard unencrypted DNS. An attacker who can intercept and modify DNS traffic from the cert-manager-controller pod can insert a crafted entry into cert-manager's DNS cache. Accessing this entry will trigger a panic, resulting in denial‑of‑service (DoS) of the cert-manager controller. The issue can also be exploited if the authoritative DNS server for the domain being validated is controlled by a malicious actor. This issue has been patched in versions 1.18.5 and 1.19.3. |
| IBM App Connect Enterprise Certified Container up to 12.19.0 (Continuous Delivery) and 12.0 LTS (Long Term Support) could allow an attacker to access sensitive files or modify configurations due to an untrusted search path. |
| IBM webMethods Integration (on prem) - Integration Server 10.15 through IS_10.15_Core_Fix2411.1 to IS_11.1_Core_Fix8 IBM webMethods Integration could disclose sensitive user information in server responses. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: Fix memory leak in wbrf_record()
The tmp buffer is allocated using kcalloc() but is not freed if
acpi_evaluate_dsm() fails. This causes a memory leak in the error path.
Fix this by explicitly freeing the tmp buffer in the error handling
path of acpi_evaluate_dsm(). |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix recvmsg() unconditional requeue
If rxrpc_recvmsg() fails because MSG_DONTWAIT was specified but the call at
the front of the recvmsg queue already has its mutex locked, it requeues
the call - whether or not the call is already queued. The call may be on
the queue because MSG_PEEK was also passed and so the call was not dequeued
or because the I/O thread requeued it.
The unconditional requeue may then corrupt the recvmsg queue, leading to
things like UAFs or refcount underruns.
Fix this by only requeuing the call if it isn't already on the queue - and
moving it to the front if it is already queued. If we don't queue it, we
have to put the ref we obtained by dequeuing it.
Also, MSG_PEEK doesn't dequeue the call so shouldn't call
rxrpc_notify_socket() for the call if we didn't use up all the data on the
queue, so fix that also. |