| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| MongoDB Server may experience an out-of-memory failure while evaluating expressions that produce deeply nested documents. The issue arises in recursive functions because the server does not periodically check the depth of the expression. |
| SQL injection in Ivanti Endpoint Manager before version 2024 SU5 allows a remote authenticated attacker to read arbitrary data from the database. |
| The vulnerability, if exploited, could allow an attacker with Event Log Reader (S-1-5-32-573) privileges to obtain proxy details, including URL and proxy credentials, from the PI to CONNECT event log files. This could enable unauthorized access to the proxy server. |
| Improper Prevention of Lock Bit Modification in SEV firmware could allow a privileged attacker to downgrade firmware potentially resulting in a loss of integrity. |
| Insufficient parameter sanitization in AMD Secure Processor (ASP) Boot Loader could allow an attacker with access to SPIROM upgrade to overwrite the memory, potentially resulting in arbitrary code execution. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable data corruption. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) Graphics Drivers and Intel LTS kernels within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Use of uninitialized variable for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow an information disclosure. Authorized adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Uncontrolled search path for some AI Playground before version 2.6.1 beta within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds write in the firmware for the Intel(R) AMT and Intel(R) Standard Manageability within Ring 3: User Applications may allow a denial of service. Network adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via network access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (low) impacts. |
| Out-of-bounds read in the firmware for some 100GbE Intel(R) Ethernet Network Adapter E810 before version cvl fw 1.7.6, cpk 1.3.7 within Ring 0: Bare Metal OS may allow a denial of service. Network adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via network access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Race condition for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow a denial of service. Authorized adversary with a privileged user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (low) impacts. |
| Improper authorization in the Intel(R) Quick Assist Technology for some Intel(R) Platforms within Ring 0: Kernel may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Insufficient input parameter sanitization in AMD Secure Processor (ASP) Boot Loader (legacy recovery mode only) could allow an attacker to write out-of-bounds to corrupt Secure DRAM potentially resulting in denial of service. |
| Insufficient or Incomplete Data Removal in Hardware Component in SEV firmware doesn't fully flush IOMMU. This can potentially lead to a loss of confidentiality and integrity in guest memory. |
| Improper access control in secure encrypted virtualization (SEV) could allow a privileged attacker to write to the reverse map page (RMP) during secure nested paging (SNP) initialization, potentially resulting in a loss of guest memory confidentiality and integrity. |
| Out-of-bounds read for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow an information disclosure. Software side channel adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds read in the firmware for some Intel(R) Converged Security and Management Engine (CSME) Firmware (FW) within Ring 0: Kernel may allow an information disclosure. System software adversary with a privileged user combined with a low complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Exposure of sensitive information during transient execution for some TDX within Ring 0: Hypervisor may allow an information disclosure. Authorized adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |