| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix infinite loop caused by next_smb2_rcv_hdr_off reset in error paths
The problem occurs when a signed request fails smb2 signature verification
check. In __process_request(), if check_sign_req() returns an error,
set_smb2_rsp_status(work, STATUS_ACCESS_DENIED) is called.
set_smb2_rsp_status() set work->next_smb2_rcv_hdr_off as zero. By resetting
next_smb2_rcv_hdr_off to zero, the pointer to the next command in the chain
is lost. Consequently, is_chained_smb2_message() continues to point to
the same request header instead of advancing. If the header's NextCommand
field is non-zero, the function returns true, causing __handle_ksmbd_work()
to repeatedly process the same failed request in an infinite loop.
This results in the kernel log being flooded with "bad smb2 signature"
messages and high CPU usage.
This patch fixes the issue by changing the return value from
SERVER_HANDLER_CONTINUE to SERVER_HANDLER_ABORT. This ensures that
the processing loop terminates immediately rather than attempting to
continue from an invalidated offset. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: fsl-mc: fix use-after-free in driver_override_show()
The driver_override_show() function reads the driver_override string
without holding the device_lock. However, driver_override_store() uses
driver_set_override(), which modifies and frees the string while holding
the device_lock.
This can result in a concurrent use-after-free if the string is freed
by the store function while being read by the show function.
Fix this by holding the device_lock around the read operation. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: omap - Allocate OMAP_CRYPTO_FORCE_COPY scatterlists correctly
The existing allocation of scatterlists in omap_crypto_copy_sg_lists()
was allocating an array of scatterlist pointers, not scatterlist objects,
resulting in a 4x too small allocation.
Use sizeof(*new_sg) to get the correct object size. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix UAF issue for file-backed mounts w/ directio option
[ 9.269940][ T3222] Call trace:
[ 9.269948][ T3222] ext4_file_read_iter+0xac/0x108
[ 9.269979][ T3222] vfs_iocb_iter_read+0xac/0x198
[ 9.269993][ T3222] erofs_fileio_rq_submit+0x12c/0x180
[ 9.270008][ T3222] erofs_fileio_submit_bio+0x14/0x24
[ 9.270030][ T3222] z_erofs_runqueue+0x834/0x8ac
[ 9.270054][ T3222] z_erofs_read_folio+0x120/0x220
[ 9.270083][ T3222] filemap_read_folio+0x60/0x120
[ 9.270102][ T3222] filemap_fault+0xcac/0x1060
[ 9.270119][ T3222] do_pte_missing+0x2d8/0x1554
[ 9.270131][ T3222] handle_mm_fault+0x5ec/0x70c
[ 9.270142][ T3222] do_page_fault+0x178/0x88c
[ 9.270167][ T3222] do_translation_fault+0x38/0x54
[ 9.270183][ T3222] do_mem_abort+0x54/0xac
[ 9.270208][ T3222] el0_da+0x44/0x7c
[ 9.270227][ T3222] el0t_64_sync_handler+0x5c/0xf4
[ 9.270253][ T3222] el0t_64_sync+0x1bc/0x1c0
EROFS may encounter above panic when enabling file-backed mount w/
directio mount option, the root cause is it may suffer UAF in below
race condition:
- z_erofs_read_folio wq s_dio_done_wq
- z_erofs_runqueue
- erofs_fileio_submit_bio
- erofs_fileio_rq_submit
- vfs_iocb_iter_read
- ext4_file_read_iter
- ext4_dio_read_iter
- iomap_dio_rw
: bio was submitted and return -EIOCBQUEUED
- dio_aio_complete_work
- dio_complete
- dio->iocb->ki_complete (erofs_fileio_ki_complete())
- kfree(rq)
: it frees iocb, iocb.ki_filp can be UAF in file_accessed().
- file_accessed
: access NULL file point
Introduce a reference count in struct erofs_fileio_rq, and initialize it
as two, both erofs_fileio_ki_complete() and erofs_fileio_rq_submit() will
decrease reference count, the last one decreasing the reference count
to zero will free rq. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Disable MMIO access during SMU Mode 1 reset
During Mode 1 reset, the ASIC undergoes a reset cycle and becomes
temporarily inaccessible via PCIe. Any attempt to access MMIO registers
during this window (e.g., from interrupt handlers or other driver threads)
can result in uncompleted PCIe transactions, leading to NMI panics or
system hangs.
To prevent this, set the `no_hw_access` flag to true immediately after
triggering the reset. This signals other driver components to skip
register accesses while the device is offline.
A memory barrier `smp_mb()` is added to ensure the flag update is
globally visible to all cores before the driver enters the sleep/wait
state.
(cherry picked from commit 7edb503fe4b6d67f47d8bb0dfafb8e699bb0f8a4) |
| The WPNakama – Team and multi-Client Collaboration, Editorial and Project Management plugin for WordPress is vulnerable to SQL Injection via the 'order' parameter of the '/wp-json/WPNakama/v1/boards' REST API endpoint in all versions up to, and including, 0.6.5. This is due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: trace: fix snapshot deadlock with sbi ecall
If sbi_ecall.c's functions are traceable,
echo "__sbi_ecall:snapshot" > /sys/kernel/tracing/set_ftrace_filter
may get the kernel into a deadlock.
(Functions in sbi_ecall.c are excluded from tracing if
CONFIG_RISCV_ALTERNATIVE_EARLY is set.)
__sbi_ecall triggers a snapshot of the ringbuffer. The snapshot code
raises an IPI interrupt, which results in another call to __sbi_ecall
and another snapshot...
All it takes to get into this endless loop is one initial __sbi_ecall.
On RISC-V systems without SSTC extension, the clock events in
timer-riscv.c issue periodic sbi ecalls, making the problem easy to
trigger.
Always exclude the sbi_ecall.c functions from tracing to fix the
potential deadlock.
sbi ecalls can easiliy be logged via trace events, excluding ecall
functions from function tracing is not a big limitation. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix UAF in xchk_btree_check_block_owner
We cannot dereference bs->cur when trying to determine if bs->cur
aliases bs->sc->sa.{bno,rmap}_cur after the latter has been freed.
Fix this by sampling before type before any freeing could happen.
The correct temporal ordering was broken when we removed xfs_btnum_t. |
| An authentication bypass in the application API allows an unauthorized administrative account to be created. A remote attacker could exploit this vulnerability to create privileged user accounts. Successful exploitation could allow an attacker to gain administrative access, modify system configurations, and access or manipulate sensitive data. |
| Vulnerabilities in the API error handling of an HPE Aruba Networking 5G Core server API could allow an unauthenticated remote attacker to obtain sensitive information. Successful exploitation could allow an attacker to access details such as user accounts, roles, and system configuration, as well as to gain insight into internal services and workflows, increasing the risk of unauthorized access and elevated privileges when combined with other vulnerabilities. |
| Vulnerabilities in the API error handling of an HPE Aruba Networking 5G Core server API could allow an unauthenticated remote attacker to obtain sensitive information. Successful exploitation could allow an attacker to access details such as user accounts, roles, and system configuration, as well as to gain insight into internal services and workflows, increasing the risk of unauthorized access and elevated privileges when combined with other vulnerabilities. |
| A local privilege-escalation vulnerability has been discovered in the HPE Aruba Networking ClearPass OnGuard Software for Linux. Successful exploitation of this vulnerability could allow a local attacker to achieve arbitrary code execution with root privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/mmcid: Don't assume CID is CPU owned on mode switch
Shinichiro reported a KASAN UAF, which is actually an out of bounds access
in the MMCID management code.
CPU0 CPU1
T1 runs in userspace
T0: fork(T4) -> Switch to per CPU CID mode
fixup() set MM_CID_TRANSIT on T1/CPU1
T4 exit()
T3 exit()
T2 exit()
T1 exit() switch to per task mode
---> Out of bounds access.
As T1 has not scheduled after T0 set the TRANSIT bit, it exits with the
TRANSIT bit set. sched_mm_cid_remove_user() clears the TRANSIT bit in
the task and drops the CID, but it does not touch the per CPU storage.
That's functionally correct because a CID is only owned by the CPU when
the ONCPU bit is set, which is mutually exclusive with the TRANSIT flag.
Now sched_mm_cid_exit() assumes that the CID is CPU owned because the
prior mode was per CPU. It invokes mm_drop_cid_on_cpu() which clears the
not set ONCPU bit and then invokes clear_bit() with an insanely large
bit number because TRANSIT is set (bit 29).
Prevent that by actually validating that the CID is CPU owned in
mm_drop_cid_on_cpu(). |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: add chann_lock to protect ksmbd_chann_list xarray
ksmbd_chann_list xarray lacks synchronization, allowing use-after-free in
multi-channel sessions (between lookup_chann_list() and ksmbd_chann_del).
Adds rw_semaphore chann_lock to struct ksmbd_session and protects
all xa_load/xa_store/xa_erase accesses. |
| The WP-DownloadManager plugin for WordPress is vulnerable to Path Traversal in all versions up to, and including, 1.69 via the 'download_path' configuration parameter. This is due to insufficient validation of the download path setting, which allows directory traversal sequences to bypass the WP_CONTENT_DIR prefix check. This makes it possible for authenticated attackers, with Administrator-level access and above, to configure the plugin to list and access arbitrary files on the server by exploiting the file browser functionality. |
| The WP-DownloadManager plugin for WordPress is vulnerable to Path Traversal in all versions up to, and including, 1.69 via the 'file' parameter in the file deletion functionality. This is due to insufficient validation of user-supplied file paths, allowing directory traversal sequences. This makes it possible for authenticated attackers, with Administrator-level access and above, to delete arbitrary files on the server, which can lead to remote code execution when critical files like wp-config.php are deleted. |
| Path traversal vulnerability in the AMR Printer Management 1.01 Beta web service, which allows remote attackers to read arbitrary files from the underlying Windows system by using specially crafted path traversal sequences in requests directed to the web management service. The service is accessible without authentication and runs with elevated privileges, amplifying the impact of the vulnerability. An attacker can exploit this condition to access sensitive and privileged files on the system using path traversal payloads. Successful exploitation of this vulnerability could lead to the unauthorized disclosure of internal system information, compromising the confidentiality of the affected environment. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/exynos: vidi: use ctx->lock to protect struct vidi_context member variables related to memory alloc/free
Exynos Virtual Display driver performs memory alloc/free operations
without lock protection, which easily causes concurrency problem.
For example, use-after-free can occur in race scenario like this:
```
CPU0 CPU1 CPU2
---- ---- ----
vidi_connection_ioctl()
if (vidi->connection) // true
drm_edid = drm_edid_alloc(); // alloc drm_edid
...
ctx->raw_edid = drm_edid;
...
drm_mode_getconnector()
drm_helper_probe_single_connector_modes()
vidi_get_modes()
if (ctx->raw_edid) // true
drm_edid_dup(ctx->raw_edid);
if (!drm_edid) // false
...
vidi_connection_ioctl()
if (vidi->connection) // false
drm_edid_free(ctx->raw_edid); // free drm_edid
...
drm_edid_alloc(drm_edid->edid)
kmemdup(edid); // UAF!!
...
```
To prevent these vulns, at least in vidi_context, member variables related
to memory alloc/free should be protected with ctx->lock. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: server: fix leak of active_num_conn in ksmbd_tcp_new_connection()
On kthread_run() failure in ksmbd_tcp_new_connection(), the transport is
freed via free_transport(), which does not decrement active_num_conn,
leaking this counter.
Replace free_transport() with ksmbd_tcp_disconnect(). |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: split cached_fid bitfields to avoid shared-byte RMW races
is_open, has_lease and on_list are stored in the same bitfield byte in
struct cached_fid but are updated in different code paths that may run
concurrently. Bitfield assignments generate byte read–modify–write
operations (e.g. `orb $mask, addr` on x86_64), so updating one flag can
restore stale values of the others.
A possible interleaving is:
CPU1: load old byte (has_lease=1, on_list=1)
CPU2: clear both flags (store 0)
CPU1: RMW store (old | IS_OPEN) -> reintroduces cleared bits
To avoid this class of races, convert these flags to separate bool
fields. |