| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: cls_u32: use skb_header_pointer_careful()
skb_header_pointer() does not fully validate negative @offset values.
Use skb_header_pointer_careful() instead.
GangMin Kim provided a report and a repro fooling u32_classify():
BUG: KASAN: slab-out-of-bounds in u32_classify+0x1180/0x11b0
net/sched/cls_u32.c:221 |
| In the Linux kernel, the following vulnerability has been resolved:
smb/client: fix memory leak in smb2_open_file()
Reproducer:
1. server: directories are exported read-only
2. client: mount -t cifs //${server_ip}/export /mnt
3. client: dd if=/dev/zero of=/mnt/file bs=512 count=1000 oflag=direct
4. client: umount /mnt
5. client: sleep 1
6. client: modprobe -r cifs
The error message is as follows:
=============================================================================
BUG cifs_small_rq (Not tainted): Objects remaining on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
Object 0x00000000d47521be @offset=14336
...
WARNING: mm/slub.c:1251 at __kmem_cache_shutdown+0x34e/0x440, CPU#0: modprobe/1577
...
Call Trace:
<TASK>
kmem_cache_destroy+0x94/0x190
cifs_destroy_request_bufs+0x3e/0x50 [cifs]
cleanup_module+0x4e/0x540 [cifs]
__se_sys_delete_module+0x278/0x400
__x64_sys_delete_module+0x5f/0x70
x64_sys_call+0x2299/0x2ff0
do_syscall_64+0x89/0x350
entry_SYSCALL_64_after_hwframe+0x76/0x7e
...
kmem_cache_destroy cifs_small_rq: Slab cache still has objects when called from cifs_destroy_request_bufs+0x3e/0x50 [cifs]
WARNING: mm/slab_common.c:532 at kmem_cache_destroy+0x16b/0x190, CPU#0: modprobe/1577 |
| In the Linux kernel, the following vulnerability has been resolved:
dpaa2-switch: prevent ZERO_SIZE_PTR dereference when num_ifs is zero
The driver allocates arrays for ports, FDBs, and filter blocks using
kcalloc() with ethsw->sw_attr.num_ifs as the element count. When the
device reports zero interfaces (either due to hardware configuration
or firmware issues), kcalloc(0, ...) returns ZERO_SIZE_PTR (0x10)
instead of NULL.
Later in dpaa2_switch_probe(), the NAPI initialization unconditionally
accesses ethsw->ports[0]->netdev, which attempts to dereference
ZERO_SIZE_PTR (address 0x10), resulting in a kernel panic.
Add a check to ensure num_ifs is greater than zero after retrieving
device attributes. This prevents the zero-sized allocations and
subsequent invalid pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer check in IRQ handler
Now that all other accesses to curr_xfer are done under the lock,
protect the curr_xfer NULL check in tegra_qspi_isr_thread() with the
spinlock. Without this protection, the following race can occur:
CPU0 (ISR thread) CPU1 (timeout path)
---------------- -------------------
if (!tqspi->curr_xfer)
// sees non-NULL
spin_lock()
tqspi->curr_xfer = NULL
spin_unlock()
handle_*_xfer()
spin_lock()
t = tqspi->curr_xfer // NULL!
... t->len ... // NULL dereference!
With this patch, all curr_xfer accesses are now properly synchronized.
Although all accesses to curr_xfer are done under the lock, in
tegra_qspi_isr_thread() it checks for NULL, releases the lock and
reacquires it later in handle_cpu_based_xfer()/handle_dma_based_xfer().
There is a potential for an update in between, which could cause a NULL
pointer dereference.
To handle this, add a NULL check inside the handlers after acquiring
the lock. This ensures that if the timeout path has already cleared
curr_xfer, the handler will safely return without dereferencing the
NULL pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Prevent excessive number of frames
In this case, the user constructed the parameters with maxpacksize 40
for rate 22050 / pps 1000, and packsize[0] 22 packsize[1] 23. The buffer
size for each data URB is maxpacksize * packets, which in this example
is 40 * 6 = 240; When the user performs a write operation to send audio
data into the ALSA PCM playback stream, the calculated number of frames
is packsize[0] * packets = 264, which exceeds the allocated URB buffer
size, triggering the out-of-bounds (OOB) issue reported by syzbot [1].
Added a check for the number of single data URB frames when calculating
the number of frames to prevent [1].
[1]
BUG: KASAN: slab-out-of-bounds in copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
Write of size 264 at addr ffff88804337e800 by task syz.0.17/5506
Call Trace:
copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
prepare_playback_urb+0x953/0x13d0 sound/usb/pcm.c:1611
prepare_outbound_urb+0x377/0xc50 sound/usb/endpoint.c:333 |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix error recovery in macvlan_common_newlink()
valis provided a nice repro to crash the kernel:
ip link add p1 type veth peer p2
ip link set address 00:00:00:00:00:20 dev p1
ip link set up dev p1
ip link set up dev p2
ip link add mv0 link p2 type macvlan mode source
ip link add invalid% link p2 type macvlan mode source macaddr add 00:00:00:00:00:20
ping -c1 -I p1 1.2.3.4
He also gave a very detailed analysis:
<quote valis>
The issue is triggered when a new macvlan link is created with
MACVLAN_MODE_SOURCE mode and MACVLAN_MACADDR_ADD (or
MACVLAN_MACADDR_SET) parameter, lower device already has a macvlan
port and register_netdevice() called from macvlan_common_newlink()
fails (e.g. because of the invalid link name).
In this case macvlan_hash_add_source is called from
macvlan_change_sources() / macvlan_common_newlink():
This adds a reference to vlan to the port's vlan_source_hash using
macvlan_source_entry.
vlan is a pointer to the priv data of the link that is being created.
When register_netdevice() fails, the error is returned from
macvlan_newlink() to rtnl_newlink_create():
if (ops->newlink)
err = ops->newlink(dev, ¶ms, extack);
else
err = register_netdevice(dev);
if (err < 0) {
free_netdev(dev);
goto out;
}
and free_netdev() is called, causing a kvfree() on the struct
net_device that is still referenced in the source entry attached to
the lower device's macvlan port.
Now all packets sent on the macvlan port with a matching source mac
address will trigger a use-after-free in macvlan_forward_source().
</quote valis>
With all that, my fix is to make sure we call macvlan_flush_sources()
regardless of @create value whenever "goto destroy_macvlan_port;"
path is taken.
Many thanks to valis for following up on this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix PTP NULL pointer dereference during VSI rebuild
Fix race condition where PTP periodic work runs while VSI is being
rebuilt, accessing NULL vsi->rx_rings.
The sequence was:
1. ice_ptp_prepare_for_reset() cancels PTP work
2. ice_ptp_rebuild() immediately queues PTP work
3. VSI rebuild happens AFTER ice_ptp_rebuild()
4. PTP work runs and accesses NULL vsi->rx_rings
Fix: Keep PTP work cancelled during rebuild, only queue it after
VSI rebuild completes in ice_rebuild().
Added ice_ptp_queue_work() helper function to encapsulate the logic
for queuing PTP work, ensuring it's only queued when PTP is supported
and the state is ICE_PTP_READY.
Error log:
[ 121.392544] ice 0000:60:00.1: PTP reset successful
[ 121.392692] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 121.392712] #PF: supervisor read access in kernel mode
[ 121.392720] #PF: error_code(0x0000) - not-present page
[ 121.392727] PGD 0
[ 121.392734] Oops: Oops: 0000 [#1] SMP NOPTI
[ 121.392746] CPU: 8 UID: 0 PID: 1005 Comm: ice-ptp-0000:60 Tainted: G S 6.19.0-rc6+ #4 PREEMPT(voluntary)
[ 121.392761] Tainted: [S]=CPU_OUT_OF_SPEC
[ 121.392773] RIP: 0010:ice_ptp_update_cached_phctime+0xbf/0x150 [ice]
[ 121.393042] Call Trace:
[ 121.393047] <TASK>
[ 121.393055] ice_ptp_periodic_work+0x69/0x180 [ice]
[ 121.393202] kthread_worker_fn+0xa2/0x260
[ 121.393216] ? __pfx_ice_ptp_periodic_work+0x10/0x10 [ice]
[ 121.393359] ? __pfx_kthread_worker_fn+0x10/0x10
[ 121.393371] kthread+0x10d/0x230
[ 121.393382] ? __pfx_kthread+0x10/0x10
[ 121.393393] ret_from_fork+0x273/0x2b0
[ 121.393407] ? __pfx_kthread+0x10/0x10
[ 121.393417] ret_from_fork_asm+0x1a/0x30
[ 121.393432] </TASK> |
| An Improper Link Resolution Before File Access ('Link Following') vulnerability [CWE-59] vulnerability in Fortinet FortiClientWindows 7.4.0 through 7.4.4, FortiClientWindows 7.2.0 through 7.2.12, FortiClientWindows 7.0 all versions may allow a local low-privilege attacker to perform an arbitrary file write with elevated permissions via crafted named pipe messages. |
| DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none. |
| Cross Site Request Forgery vulnerability in Dolibarr ERP & CRM v.22.0.9 allows a remote attacker to escalate privileges via the notes field in perms.php NOTE: this is disputed by a third party who indicates that exploitation can only occur if an unprivileged user knows the token of an admin user. |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| A vulnerability in the certificate validation logic may allow applications to accept untrusted or improperly validated server identities during TLS communication. An attacker in a privileged network position may be able to intercept or modify traffic if they can position themselves within the communication channel. Successful exploitation may compromise confidentiality, integrity, and availability of application data. |