Search

Search Results (333752 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-60037 1 Bosch Rexroth 1 Indraworks 2026-02-19 7.8 High
A vulnerability has been identified in Rexroth IndraWorks. This flaw allows an attacker to execute arbitrary code on the user's system by parsing a manipulated file containing malicious serialized data. Exploitation requires user interaction, specifically opening a specially crafted file, which then causes the application to deserialize the malicious data, enabling Remote Code Execution (RCE). This can lead to a complete compromise of the system running Rexroth IndraWorks.
CVE-2025-60038 1 Bosch Rexroth 1 Indraworks 2026-02-19 7.8 High
A vulnerability has been identified in Rexroth IndraWorks. This flaw allows an attacker to execute arbitrary code on the user's system by parsing a manipulated file containing malicious serialized data. Exploitation requires user interaction, specifically opening a specially crafted file, which then causes the application to deserialize the malicious data, enabling Remote Code Execution (RCE). This can lead to a complete compromise of the system running Rexroth IndraWorks.
CVE-2026-2329 1 Grandstream 6 Gxp1610, Gxp1615, Gxp1620 and 3 more 2026-02-19 N/A
An unauthenticated stack-based buffer overflow vulnerability exists in the HTTP API endpoint /cgi-bin/api.values.get. A remote attacker can leverage this vulnerability to achieve unauthenticated remote code execution (RCE) with root privileges on a target device. The vulnerability affects all six device models in the series: GXP1610, GXP1615, GXP1620, GXP1625, GXP1628, and GXP1630.
CVE-2026-23211 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm, swap: restore swap_space attr aviod kernel panic commit 8b47299a411a ("mm, swap: mark swap address space ro and add context debug check") made the swap address space read-only. It may lead to kernel panic if arch_prepare_to_swap returns a failure under heavy memory pressure as follows, el1_abort+0x40/0x64 el1h_64_sync_handler+0x48/0xcc el1h_64_sync+0x84/0x88 errseq_set+0x4c/0xb8 (P) __filemap_set_wb_err+0x20/0xd0 shrink_folio_list+0xc20/0x11cc evict_folios+0x1520/0x1be4 try_to_shrink_lruvec+0x27c/0x3dc shrink_one+0x9c/0x228 shrink_node+0xb3c/0xeac do_try_to_free_pages+0x170/0x4f0 try_to_free_pages+0x334/0x534 __alloc_pages_direct_reclaim+0x90/0x158 __alloc_pages_slowpath+0x334/0x588 __alloc_frozen_pages_noprof+0x224/0x2fc __folio_alloc_noprof+0x14/0x64 vma_alloc_zeroed_movable_folio+0x34/0x44 do_pte_missing+0xad4/0x1040 handle_mm_fault+0x4a4/0x790 do_page_fault+0x288/0x5f8 do_translation_fault+0x38/0x54 do_mem_abort+0x54/0xa8 Restore swap address space as not ro to avoid the panic.
CVE-2026-23212 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: annotate data-races around slave->last_rx slave->last_rx and slave->target_last_arp_rx[...] can be read and written locklessly. Add READ_ONCE() and WRITE_ONCE() annotations. syzbot reported: BUG: KCSAN: data-race in bond_rcv_validate / bond_rcv_validate write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 1: bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335 bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533 __netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039 __netif_receive_skb_one_core net/core/dev.c:6150 [inline] __netif_receive_skb+0x59/0x270 net/core/dev.c:6265 netif_receive_skb_internal net/core/dev.c:6351 [inline] netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410 ... write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 0: bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335 bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533 __netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039 __netif_receive_skb_one_core net/core/dev.c:6150 [inline] __netif_receive_skb+0x59/0x270 net/core/dev.c:6265 netif_receive_skb_internal net/core/dev.c:6351 [inline] netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410 br_netif_receive_skb net/bridge/br_input.c:30 [inline] NF_HOOK include/linux/netfilter.h:318 [inline] ... value changed: 0x0000000100005365 -> 0x0000000100005366
CVE-2026-27099 1 Jenkins Project 1 Jenkins 2026-02-19 8 High
Jenkins 2.483 through 2.550 (both inclusive), LTS 2.492.1 through 2.541.1 (both inclusive) does not escape the user-provided description of the "Mark temporarily offline" offline cause, resulting in a stored cross-site scripting (XSS) vulnerability exploitable by attackers with Agent/Configure or Agent/Disconnect permission.
CVE-2026-27100 1 Jenkins Project 1 Jenkins 2026-02-19 4.3 Medium
Jenkins 2.550 and earlier, LTS 2.541.1 and earlier accepts Run Parameter values that refer to builds the user submitting the build does not have access to, allowing attackers with Item/Build and Item/Configure permission to obtain information about the existence of jobs, the existence of builds, and if a specified build exists, its display name.
CVE-2025-71225 1 Linux 1 Linux Kernel 2026-02-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: md: suspend array while updating raid_disks via sysfs In raid1_reshape(), freeze_array() is called before modifying the r1bio memory pool (conf->r1bio_pool) and conf->raid_disks, and unfreeze_array() is called after the update is completed. However, freeze_array() only waits until nr_sync_pending and (nr_pending - nr_queued) of all buckets reaches zero. When an I/O error occurs, nr_queued is increased and the corresponding r1bio is queued to either retry_list or bio_end_io_list. As a result, freeze_array() may unblock before these r1bios are released. This can lead to a situation where conf->raid_disks and the mempool have already been updated while queued r1bios, allocated with the old raid_disks value, are later released. Consequently, free_r1bio() may access memory out of bounds in put_all_bios() and release r1bios of the wrong size to the new mempool, potentially causing issues with the mempool as well. Since only normal I/O might increase nr_queued while an I/O error occurs, suspending the array avoids this issue. Note: Updating raid_disks via ioctl SET_ARRAY_INFO already suspends the array. Therefore, we suspend the array when updating raid_disks via sysfs to avoid this issue too.
CVE-2025-71226 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: Implement settime64 as stub for MVM/MLD PTP Since commit dfb073d32cac ("ptp: Return -EINVAL on ptp_clock_register if required ops are NULL"), PTP clock registered through ptp_clock_register is required to have ptp_clock_info.settime64 set, however, neither MVM nor MLD's PTP clock implementation sets it, resulting in warnings when the interface starts up, like WARNING: drivers/ptp/ptp_clock.c:325 at ptp_clock_register+0x2c8/0x6b8, CPU#1: wpa_supplicant/469 CPU: 1 UID: 0 PID: 469 Comm: wpa_supplicant Not tainted 6.18.0+ #101 PREEMPT(full) ra: ffff800002732cd4 iwl_mvm_ptp_init+0x114/0x188 [iwlmvm] ERA: 9000000002fdc468 ptp_clock_register+0x2c8/0x6b8 iwlwifi 0000:01:00.0: Failed to register PHC clock (-22) I don't find an appropriate firmware interface to implement settime64() for iwlwifi MLD/MVM, thus instead create a stub that returns -EOPTNOTSUPP only, suppressing the warning and allowing the PTP clock to be registered.
CVE-2025-71227 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: don't WARN for connections on invalid channels It's not clear (to me) how exactly syzbot managed to hit this, but it seems conceivable that e.g. regulatory changed and has disabled a channel between scanning (channel is checked to be usable by cfg80211_get_ies_channel_number) and connecting on the channel later. With one scenario that isn't covered elsewhere described above, the warning isn't good, replace it with a (more informative) error message.
CVE-2025-71228 1 Linux 1 Linux Kernel 2026-02-19 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Set correct protection_map[] for VM_NONE/VM_SHARED For 32BIT platform _PAGE_PROTNONE is 0, so set a VMA to be VM_NONE or VM_SHARED will make pages non-present, then cause Oops with kernel page fault. Fix it by set correct protection_map[] for VM_NONE/VM_SHARED, replacing _PAGE_PROTNONE with _PAGE_PRESENT.
CVE-2026-23213 1 Linux 1 Linux Kernel 2026-02-19 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Disable MMIO access during SMU Mode 1 reset During Mode 1 reset, the ASIC undergoes a reset cycle and becomes temporarily inaccessible via PCIe. Any attempt to access MMIO registers during this window (e.g., from interrupt handlers or other driver threads) can result in uncompleted PCIe transactions, leading to NMI panics or system hangs. To prevent this, set the `no_hw_access` flag to true immediately after triggering the reset. This signals other driver components to skip register accesses while the device is offline. A memory barrier `smp_mb()` is added to ensure the flag update is globally visible to all cores before the driver enters the sleep/wait state. (cherry picked from commit 7edb503fe4b6d67f47d8bb0dfafb8e699bb0f8a4)
CVE-2026-23214 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: reject new transactions if the fs is fully read-only [BUG] There is a bug report where a heavily fuzzed fs is mounted with all rescue mount options, which leads to the following warnings during unmount: BTRFS: Transaction aborted (error -22) Modules linked in: CPU: 0 UID: 0 PID: 9758 Comm: repro.out Not tainted 6.19.0-rc5-00002-gb71e635feefc #7 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:find_free_extent_update_loop fs/btrfs/extent-tree.c:4208 [inline] RIP: 0010:find_free_extent+0x52f0/0x5d20 fs/btrfs/extent-tree.c:4611 Call Trace: <TASK> btrfs_reserve_extent+0x2cd/0x790 fs/btrfs/extent-tree.c:4705 btrfs_alloc_tree_block+0x1e1/0x10e0 fs/btrfs/extent-tree.c:5157 btrfs_force_cow_block+0x578/0x2410 fs/btrfs/ctree.c:517 btrfs_cow_block+0x3c4/0xa80 fs/btrfs/ctree.c:708 btrfs_search_slot+0xcad/0x2b50 fs/btrfs/ctree.c:2130 btrfs_truncate_inode_items+0x45d/0x2350 fs/btrfs/inode-item.c:499 btrfs_evict_inode+0x923/0xe70 fs/btrfs/inode.c:5628 evict+0x5f4/0xae0 fs/inode.c:837 __dentry_kill+0x209/0x660 fs/dcache.c:670 finish_dput+0xc9/0x480 fs/dcache.c:879 shrink_dcache_for_umount+0xa0/0x170 fs/dcache.c:1661 generic_shutdown_super+0x67/0x2c0 fs/super.c:621 kill_anon_super+0x3b/0x70 fs/super.c:1289 btrfs_kill_super+0x41/0x50 fs/btrfs/super.c:2127 deactivate_locked_super+0xbc/0x130 fs/super.c:474 cleanup_mnt+0x425/0x4c0 fs/namespace.c:1318 task_work_run+0x1d4/0x260 kernel/task_work.c:233 exit_task_work include/linux/task_work.h:40 [inline] do_exit+0x694/0x22f0 kernel/exit.c:971 do_group_exit+0x21c/0x2d0 kernel/exit.c:1112 __do_sys_exit_group kernel/exit.c:1123 [inline] __se_sys_exit_group kernel/exit.c:1121 [inline] __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1121 x64_sys_call+0x2210/0x2210 arch/x86/include/generated/asm/syscalls_64.h:232 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xe8/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x44f639 Code: Unable to access opcode bytes at 0x44f60f. RSP: 002b:00007ffc15c4e088 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 00000000004c32f0 RCX: 000000000044f639 RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000001 RBP: 0000000000000001 R08: ffffffffffffffc0 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000004c32f0 R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001 </TASK> Since rescue mount options will mark the full fs read-only, there should be no new transaction triggered. But during unmount we will evict all inodes, which can trigger a new transaction, and triggers warnings on a heavily corrupted fs. [CAUSE] Btrfs allows new transaction even on a read-only fs, this is to allow log replay happen even on read-only mounts, just like what ext4/xfs do. However with rescue mount options, the fs is fully read-only and cannot be remounted read-write, thus in that case we should also reject any new transactions. [FIX] If we find the fs has rescue mount options, we should treat the fs as error, so that no new transaction can be started.
CVE-2026-23215 1 Linux 1 Linux Kernel 2026-02-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: x86/vmware: Fix hypercall clobbers Fedora QA reported the following panic: BUG: unable to handle page fault for address: 0000000040003e54 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20251119-3.fc43 11/19/2025 RIP: 0010:vmware_hypercall4.constprop.0+0x52/0x90 .. Call Trace: vmmouse_report_events+0x13e/0x1b0 psmouse_handle_byte+0x15/0x60 ps2_interrupt+0x8a/0xd0 ... because the QEMU VMware mouse emulation is buggy, and clears the top 32 bits of %rdi that the kernel kept a pointer in. The QEMU vmmouse driver saves and restores the register state in a "uint32_t data[6];" and as a result restores the state with the high bits all cleared. RDI originally contained the value of a valid kernel stack address (0xff5eeb3240003e54). After the vmware hypercall it now contains 0x40003e54, and we get a page fault as a result when it is dereferenced. The proper fix would be in QEMU, but this works around the issue in the kernel to keep old setups working, when old kernels had not happened to keep any state in %rdi over the hypercall. In theory this same issue exists for all the hypercalls in the vmmouse driver; in practice it has only been seen with vmware_hypercall3() and vmware_hypercall4(). For now, just mark RDI/RSI as clobbered for those two calls. This should have a minimal effect on code generation overall as it should be rare for the compiler to want to make RDI/RSI live across hypercalls.
CVE-2026-23216 1 Linux 1 Linux Kernel 2026-02-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: target: iscsi: Fix use-after-free in iscsit_dec_conn_usage_count() In iscsit_dec_conn_usage_count(), the function calls complete() while holding the conn->conn_usage_lock. As soon as complete() is invoked, the waiter (such as iscsit_close_connection()) may wake up and proceed to free the iscsit_conn structure. If the waiter frees the memory before the current thread reaches spin_unlock_bh(), it results in a KASAN slab-use-after-free as the function attempts to release a lock within the already-freed connection structure. Fix this by releasing the spinlock before calling complete().
CVE-2026-23217 1 Linux 1 Linux Kernel 2026-02-19 N/A
In the Linux kernel, the following vulnerability has been resolved: riscv: trace: fix snapshot deadlock with sbi ecall If sbi_ecall.c's functions are traceable, echo "__sbi_ecall:snapshot" > /sys/kernel/tracing/set_ftrace_filter may get the kernel into a deadlock. (Functions in sbi_ecall.c are excluded from tracing if CONFIG_RISCV_ALTERNATIVE_EARLY is set.) __sbi_ecall triggers a snapshot of the ringbuffer. The snapshot code raises an IPI interrupt, which results in another call to __sbi_ecall and another snapshot... All it takes to get into this endless loop is one initial __sbi_ecall. On RISC-V systems without SSTC extension, the clock events in timer-riscv.c issue periodic sbi ecalls, making the problem easy to trigger. Always exclude the sbi_ecall.c functions from tracing to fix the potential deadlock. sbi ecalls can easiliy be logged via trace events, excluding ecall functions from function tracing is not a big limitation.
CVE-2026-23218 1 Linux 1 Linux Kernel 2026-02-19 N/A
In the Linux kernel, the following vulnerability has been resolved: gpio: loongson-64bit: Fix incorrect NULL check after devm_kcalloc() Fix incorrect NULL check in loongson_gpio_init_irqchip(). The function checks chip->parent instead of chip->irq.parents.
CVE-2026-23219 1 Linux 1 Linux Kernel 2026-02-19 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/slab: Add alloc_tagging_slab_free_hook for memcg_alloc_abort_single When CONFIG_MEM_ALLOC_PROFILING_DEBUG is enabled, the following warning may be noticed: [ 3959.023862] ------------[ cut here ]------------ [ 3959.023891] alloc_tag was not cleared (got tag for lib/xarray.c:378) [ 3959.023947] WARNING: ./include/linux/alloc_tag.h:155 at alloc_tag_add+0x128/0x178, CPU#6: mkfs.ntfs/113998 [ 3959.023978] Modules linked in: dns_resolver tun brd overlay exfat btrfs blake2b libblake2b xor xor_neon raid6_pq loop sctp ip6_udp_tunnel udp_tunnel ext4 crc16 mbcache jbd2 rfkill sunrpc vfat fat sg fuse nfnetlink sr_mod virtio_gpu cdrom drm_client_lib virtio_dma_buf drm_shmem_helper drm_kms_helper ghash_ce drm sm4 backlight virtio_net net_failover virtio_scsi failover virtio_console virtio_blk virtio_mmio dm_mirror dm_region_hash dm_log dm_multipath dm_mod i2c_dev aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject] [ 3959.024170] CPU: 6 UID: 0 PID: 113998 Comm: mkfs.ntfs Kdump: loaded Tainted: G W 6.19.0-rc7+ #7 PREEMPT(voluntary) [ 3959.024182] Tainted: [W]=WARN [ 3959.024186] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 [ 3959.024192] pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 3959.024199] pc : alloc_tag_add+0x128/0x178 [ 3959.024207] lr : alloc_tag_add+0x128/0x178 [ 3959.024214] sp : ffff80008b696d60 [ 3959.024219] x29: ffff80008b696d60 x28: 0000000000000000 x27: 0000000000000240 [ 3959.024232] x26: 0000000000000000 x25: 0000000000000240 x24: ffff800085d17860 [ 3959.024245] x23: 0000000000402800 x22: ffff0000c0012dc0 x21: 00000000000002d0 [ 3959.024257] x20: ffff0000e6ef3318 x19: ffff800085ae0410 x18: 0000000000000000 [ 3959.024269] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 [ 3959.024281] x14: 0000000000000000 x13: 0000000000000001 x12: ffff600064101293 [ 3959.024292] x11: 1fffe00064101292 x10: ffff600064101292 x9 : dfff800000000000 [ 3959.024305] x8 : 00009fff9befed6e x7 : ffff000320809493 x6 : 0000000000000001 [ 3959.024316] x5 : ffff000320809490 x4 : ffff600064101293 x3 : ffff800080691838 [ 3959.024328] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000d5bcd640 [ 3959.024340] Call trace: [ 3959.024346] alloc_tag_add+0x128/0x178 (P) [ 3959.024355] __alloc_tagging_slab_alloc_hook+0x11c/0x1a8 [ 3959.024362] kmem_cache_alloc_lru_noprof+0x1b8/0x5e8 [ 3959.024369] xas_alloc+0x304/0x4f0 [ 3959.024381] xas_create+0x1e0/0x4a0 [ 3959.024388] xas_store+0x68/0xda8 [ 3959.024395] __filemap_add_folio+0x5b0/0xbd8 [ 3959.024409] filemap_add_folio+0x16c/0x7e0 [ 3959.024416] __filemap_get_folio_mpol+0x2dc/0x9e8 [ 3959.024424] iomap_get_folio+0xfc/0x180 [ 3959.024435] __iomap_get_folio+0x2f8/0x4b8 [ 3959.024441] iomap_write_begin+0x198/0xc18 [ 3959.024448] iomap_write_iter+0x2ec/0x8f8 [ 3959.024454] iomap_file_buffered_write+0x19c/0x290 [ 3959.024461] blkdev_write_iter+0x38c/0x978 [ 3959.024470] vfs_write+0x4d4/0x928 [ 3959.024482] ksys_write+0xfc/0x1f8 [ 3959.024489] __arm64_sys_write+0x74/0xb0 [ 3959.024496] invoke_syscall+0xd4/0x258 [ 3959.024507] el0_svc_common.constprop.0+0xb4/0x240 [ 3959.024514] do_el0_svc+0x48/0x68 [ 3959.024520] el0_svc+0x40/0xf8 [ 3959.024526] el0t_64_sync_handler+0xa0/0xe8 [ 3959.024533] el0t_64_sync+0x1ac/0x1b0 [ 3959.024540] ---[ end trace 0000000000000000 ]--- When __memcg_slab_post_alloc_hook() fails, there are two different free paths depending on whether size == 1 or size != 1. In the kmem_cache_free_bulk() path, we do call alloc_tagging_slab_free_hook(). However, in memcg_alloc_abort_single() we don't, the above warning will be triggered on the next allocation. Therefore, add alloc_tagging_slab_free_hook() to the memcg_alloc_abort_single() path.
CVE-2026-1426 2 Berocket, Wordpress 2 Advanced Ajax Product Filters, Wordpress 2026-02-19 8.8 High
The Advanced AJAX Product Filters plugin for WordPress is vulnerable to PHP Object Injection in all versions up to, and including, 3.1.9.6 via deserialization of untrusted input in the shortcode_check function within the Live Composer compatibility layer. This makes it possible for authenticated attackers, with Author-level access and above, to inject a PHP Object. No known POP chain is present in the vulnerable software, which means this vulnerability has no impact unless another plugin or theme containing a POP chain is installed on the site. If a POP chain is present via an additional plugin or theme installed on the target system, it may allow the attacker to perform actions like delete arbitrary files, retrieve sensitive data, or execute code depending on the POP chain present. Note: This vulnerability requires the Live Composer plugin to also be installed and active.
CVE-2026-1404 2 Ultimatemember, Wordpress 2 Ultimate Member – User Profile, Registration, Login, Member Directory, Content Restriction & Membership Plugin, Wordpress 2026-02-19 6.1 Medium
The Ultimate Member – User Profile, Registration, Login, Member Directory, Content Restriction & Membership Plugin plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the filter parameters (e.g., 'filter_first_name') in all versions up to, and including, 2.11.1 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link.