| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The function _ux_host_class_storage_media_mount() is responsible for mounting partitions on a USB mass storage device. When it encounters an extended partition entry in the partition table, it recursively calls itself to mount the next logical partition.
This recursion occurs in _ux_host_class_storage_partition_read(), which parses up to four partition entries. If an extended partition is found (with type UX_HOST_CLASS_STORAGE_PARTITION_EXTENDED or EXTENDED_LBA_MAPPED), the code invokes:
_ux_host_class_storage_media_mount(storage, sector + _ux_utility_long_get(...));
There is no limit on the recursion depth or tracking of visited sectors. As a result, a malicious or malformed disk image can include cyclic or excessively deep chains of extended partitions, causing the function to recurse until stack overflow occurs. |
| A denial-of-service vulnerability exists in the NetX IPv6 component functionality of Eclipse ThreadX NetX Duo. A specially crafted network packet of "Packet Too Big" with more than 15 different source address can lead to denial of service. An attacker can send a malicious packet to trigger this vulnerability. |
| Meshtastic is an open source mesh networking solution. In the current Meshtastic architecture, a Node is identified by their NodeID, generated from the MAC address, rather than their public key. This aspect downgrades the security, specifically by abusing the HAM mode which doesn't use encryption. An attacker can, as such, forge a NodeInfo on behalf of a victim node advertising that the HAM mode is enabled. This, in turn, will allow the other nodes on the mesh to accept the new information and overwriting the NodeDB. The other nodes will then only be able to send direct messages to the victim by using the shared channel key instead of the PKC. Additionally, because HAM mode by design doesn't provide any confidentiality or authentication of information, the attacker could potentially also be able to change the Node details, like the full name, short code, etc. To keep the attack persistent, it is enough to regularly resend the forged NodeInfo, in particular right after the victim sends their own. A patch is available in version 2.7.6.834c3c5. |
| Cross-Site request forgery (CSRF) vulnerability in Sync Breeze Enterprise Server v10.4.18 and Disk Pulse Enterprise v10.4.18. An authenticated user could cause another user to perform unwanted actions within the application they are logged into. This vulnerability is possible due to the lack of proper CSRF token implementation. Among other things, it is possible, using a POST request to change a user's password or create users via '/setup_login?sid=', affecting the 'username', 'password', and 'cpassword' parameters. |
| Cross-Site request forgery (CSRF) vulnerability in Sync Breeze Enterprise Server v10.4.18 and Disk Pulse Enterprise v10.4.18. An authenticated user could cause another user to perform unwanted actions within the application they are logged into. This vulnerability is possible due to the lack of proper CSRF token implementation. Among other things, it is possible, using a POST request to delete commands individually via '/delete_command?sid=', using the 'cid' parameter. |
| Cross-Site request forgery (CSRF) vulnerability in Sync Breeze Enterprise Server v10.4.18 and Disk Pulse Enterprise v10.4.18. An authenticated user could cause another user to perform unwanted actions within the application they are logged into. This vulnerability is possible due to the lack of proper CSRF token implementation. Among other things, it is possible, using a POST request to rename commands via '/rename_command?sid=', affecting the 'command_name' parameter. |
| Sync Breeze Enterprise Server v10.4.18 and Disk Pulse Enterprise v10.4.18 contain a remote denial-of-service (DoS) vulnerability in the configuration restore functionality. The issue is due to insufficient validation of user-supplied data during this process. An attacker could send malicious requests to alter the configuration file, causing the application to become unresponsive. In a successful scenario, the service may not recover on its own and require a complete reinstallation, as the configuration becomes corrupted and prevents the service from restarting, even manually. |
| Sync Breeze Enterprise Server v10.4.18 and Disk Pulse Enterprise v10.4.18 contain a persistent authenticated Cross-Site Scripting (XSS) vulnerability. An attacker could send malicious content to an authenticated user and steal information from their session due to insufficient validation of user input in '/add_command?sid=', affecting the 'command_name' parameter. |
| Sync Breeze Enterprise Server v10.4.18 and Disk Pulse Enterprise v10.4.18 contain a persistent authenticated Cross-Site Scripting (XSS) vulnerability. An attacker could send malicious content to an authenticated user and steal information from their session due to insufficient validation of user input in '/edit_command?sid=', affecting the 'source_dir' and ‘dest_dir’ parameters. |
| Sync Breeze Enterprise Server v10.4.18 and Disk Pulse Enterprise v10.4.18 contain a persistent authenticated Cross-Site Scripting (XSS) vulnerability. An attacker could send malicious content to an authenticated user and steal information from their session due to insufficient validation of user input in '/server_options?sid=', affecting the 'tasks_logs_dir', 'errors_logs_dir', 'error_notifications_address', 'status_notifications_address', and 'status_reports_address' parameters. |
| Sync Breeze Enterprise Server v10.4.18 and Disk Pulse Enterprise v10.4.18 contain a persistent authenticated Cross-Site Scripting (XSS) vulnerability. An attacker could send malicious content to an authenticated user and steal information from their session due to insufficient validation of user input in '/server_options?sid=', affecting the 'tasks_logs_dir', 'errors_logs_dir', 'error_notifications_address', 'status_notifications_address', and 'status_reports_address' parameters. |
| Disk Pulse Enterprise v10.4.18 has an authenticated reflected XSS vulnerability in the '/monitor_directory?sid=' endpoint, caused by insufficient validation of the 'monitor_directory' parameter sent by POST. An attacker could exploit this weakness to send malicious content to an authenticated user and steal information from their session. |
| The kernel driver of CPUID CPU-Z v2.17 and earlier does not validate user-supplied values passed via its IOCTL interface, allowing an attacker to access sensitive information via a crafted request. |
| Issue summary: A TLS 1.3 connection using certificate compression can be
forced to allocate a large buffer before decompression without checking
against the configured certificate size limit.
Impact summary: An attacker can cause per-connection memory allocations of
up to approximately 22 MiB and extra CPU work, potentially leading to
service degradation or resource exhaustion (Denial of Service).
In affected configurations, the peer-supplied uncompressed certificate
length from a CompressedCertificate message is used to grow a heap buffer
prior to decompression. This length is not bounded by the max_cert_list
setting, which otherwise constrains certificate message sizes. An attacker
can exploit this to cause large per-connection allocations followed by
handshake failure. No memory corruption or information disclosure occurs.
This issue only affects builds where TLS 1.3 certificate compression is
compiled in (i.e., not OPENSSL_NO_COMP_ALG) and at least one compression
algorithm (brotli, zlib, or zstd) is available, and where the compression
extension is negotiated. Both clients receiving a server CompressedCertificate
and servers in mutual TLS scenarios receiving a client CompressedCertificate
are affected. Servers that do not request client certificates are not
vulnerable to client-initiated attacks.
Users can mitigate this issue by setting SSL_OP_NO_RX_CERTIFICATE_COMPRESSION
to disable receiving compressed certificates.
The FIPS modules in 3.6, 3.5, 3.4 and 3.3 are not affected by this issue,
as the TLS implementation is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5, 3.4 and 3.3 are vulnerable to this issue.
OpenSSL 3.0, 1.1.1 and 1.0.2 are not affected by this issue. |
| OpenEMR is a free and open source electronic health records and medical practice management application. Versions prior to 7.0.4 have a broken access control in the Profile Edit endpoint. An authenticated normal user can modify the request parameters (pubpid / pid) to reference another user’s record; the server accepts the modified IDs and applies the changes to that other user’s profile. This allows one user to alter another user’s profile data (name, contact info, etc.), and could enable account takeover. Version 7.0.4 fixes the issue. |
| Issue summary: Writing large, newline-free data into a BIO chain using the
line-buffering filter where the next BIO performs short writes can trigger
a heap-based out-of-bounds write.
Impact summary: This out-of-bounds write can cause memory corruption which
typically results in a crash, leading to Denial of Service for an application.
The line-buffering BIO filter (BIO_f_linebuffer) is not used by default in
TLS/SSL data paths. In OpenSSL command-line applications, it is typically
only pushed onto stdout/stderr on VMS systems. Third-party applications that
explicitly use this filter with a BIO chain that can short-write and that
write large, newline-free data influenced by an attacker would be affected.
However, the circumstances where this could happen are unlikely to be under
attacker control, and BIO_f_linebuffer is unlikely to be handling non-curated
data controlled by an attacker. For that reason the issue was assessed as
Low severity.
The FIPS modules in 3.6, 3.5, 3.4, 3.3 and 3.0 are not affected by this issue,
as the BIO implementation is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are vulnerable to this issue. |
| xrdp is an open source RDP server. xrdp before v0.10.5 contains an unauthenticated stack-based buffer overflow vulnerability. The issue stems from improper bounds checking when processing user domain information during the connection sequence. If exploited, the vulnerability could allow remote attackers to execute arbitrary code on the target system. The vulnerability allows an attacker to overwrite the stack buffer and the return address, which could theoretically be used to redirect the execution flow. The impact of this vulnerability is lessened if a compiler flag has been used to build the xrdp executable with stack canary protection. If this is the case, a second vulnerability would need to be used to leak the stack canary value. Upgrade to version 0.10.5 to receive a patch. Additionally, do not rely on stack canary protection on production systems. |
| Issue summary: When using the low-level OCB API directly with AES-NI or<br>other hardware-accelerated code paths, inputs whose length is not a multiple<br>of 16 bytes can leave the final partial block unencrypted and unauthenticated.<br><br>Impact summary: The trailing 1-15 bytes of a message may be exposed in<br>cleartext on encryption and are not covered by the authentication tag,<br>allowing an attacker to read or tamper with those bytes without detection.<br><br>The low-level OCB encrypt and decrypt routines in the hardware-accelerated<br>stream path process full 16-byte blocks but do not advance the input/output<br>pointers. The subsequent tail-handling code then operates on the original<br>base pointers, effectively reprocessing the beginning of the buffer while<br>leaving the actual trailing bytes unprocessed. The authentication checksum<br>also excludes the true tail bytes.<br><br>However, typical OpenSSL consumers using EVP are not affected because the<br>higher-level EVP and provider OCB implementations split inputs so that full<br>blocks and trailing partial blocks are processed in separate calls, avoiding<br>the problematic code path. Additionally, TLS does not use OCB ciphersuites.<br>The vulnerability only affects applications that call the low-level<br>CRYPTO_ocb128_encrypt() or CRYPTO_ocb128_decrypt() functions directly with<br>non-block-aligned lengths in a single call on hardware-accelerated builds.<br>For these reasons the issue was assessed as Low severity.<br><br>The FIPS modules in 3.6, 3.5, 3.4, 3.3, 3.2, 3.1 and 3.0 are not affected<br>by this issue, as OCB mode is not a FIPS-approved algorithm.<br><br>OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0 and 1.1.1 are vulnerable to this issue.<br><br>OpenSSL 1.0.2 is not affected by this issue. |
| Issue summary: Calling PKCS12_get_friendlyname() function on a maliciously
crafted PKCS#12 file with a BMPString (UTF-16BE) friendly name containing
non-ASCII BMP code point can trigger a one byte write before the allocated
buffer.
Impact summary: The out-of-bounds write can cause a memory corruption
which can have various consequences including a Denial of Service.
The OPENSSL_uni2utf8() function performs a two-pass conversion of a PKCS#12
BMPString (UTF-16BE) to UTF-8. In the second pass, when emitting UTF-8 bytes,
the helper function bmp_to_utf8() incorrectly forwards the remaining UTF-16
source byte count as the destination buffer capacity to UTF8_putc(). For BMP
code points above U+07FF, UTF-8 requires three bytes, but the forwarded
capacity can be just two bytes. UTF8_putc() then returns -1, and this negative
value is added to the output length without validation, causing the
length to become negative. The subsequent trailing NUL byte is then written
at a negative offset, causing write outside of heap allocated buffer.
The vulnerability is reachable via the public PKCS12_get_friendlyname() API
when parsing attacker-controlled PKCS#12 files. While PKCS12_parse() uses a
different code path that avoids this issue, PKCS12_get_friendlyname() directly
invokes the vulnerable function. Exploitation requires an attacker to provide
a malicious PKCS#12 file to be parsed by the application and the attacker
can just trigger a one zero byte write before the allocated buffer.
For that reason the issue was assessed as Low severity according to our
Security Policy.
The FIPS modules in 3.6, 3.5, 3.4, 3.3 and 3.0 are not affected by this issue,
as the PKCS#12 implementation is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0 and 1.1.1 are vulnerable to this issue.
OpenSSL 1.0.2 is not affected by this issue. |
| Issue summary: A type confusion vulnerability exists in the TimeStamp Response
verification code where an ASN1_TYPE union member is accessed without first
validating the type, causing an invalid or NULL pointer dereference when
processing a malformed TimeStamp Response file.
Impact summary: An application calling TS_RESP_verify_response() with a
malformed TimeStamp Response can be caused to dereference an invalid or
NULL pointer when reading, resulting in a Denial of Service.
The functions ossl_ess_get_signing_cert() and ossl_ess_get_signing_cert_v2()
access the signing cert attribute value without validating its type.
When the type is not V_ASN1_SEQUENCE, this results in accessing invalid memory
through the ASN1_TYPE union, causing a crash.
Exploiting this vulnerability requires an attacker to provide a malformed
TimeStamp Response to an application that verifies timestamp responses. The
TimeStamp protocol (RFC 3161) is not widely used and the impact of the
exploit is just a Denial of Service. For these reasons the issue was
assessed as Low severity.
The FIPS modules in 3.5, 3.4, 3.3 and 3.0 are not affected by this issue,
as the TimeStamp Response implementation is outside the OpenSSL FIPS module
boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0 and 1.1.1 are vulnerable to this issue.
OpenSSL 1.0.2 is not affected by this issue. |