Search

Search Results (324624 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54126 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: safexcel - Cleanup ring IRQ workqueues on load failure A failure loading the safexcel driver results in the following warning on boot, because the IRQ affinity has not been correctly cleaned up. Ensure we clean up the affinity and workqueues on a failure to load the driver. crypto-safexcel: probe of f2800000.crypto failed with error -2 ------------[ cut here ]------------ WARNING: CPU: 1 PID: 232 at kernel/irq/manage.c:1913 free_irq+0x300/0x340 Modules linked in: hwmon mdio_i2c crypto_safexcel(+) md5 sha256_generic libsha256 authenc libdes omap_rng rng_core nft_masq nft_nat nft_chain_nat nf_nat nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables libcrc32c nfnetlink fuse autofs4 CPU: 1 PID: 232 Comm: systemd-udevd Tainted: G W 6.1.6-00002-g9d4898824677 #3 Hardware name: MikroTik RB5009 (DT) pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : free_irq+0x300/0x340 lr : free_irq+0x2e0/0x340 sp : ffff800008fa3890 x29: ffff800008fa3890 x28: 0000000000000000 x27: 0000000000000000 x26: ffff8000008e6dc0 x25: ffff000009034cac x24: ffff000009034d50 x23: 0000000000000000 x22: 000000000000004a x21: ffff0000093e0d80 x20: ffff000009034c00 x19: ffff00000615fc00 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 000075f5c1584c5e x14: 0000000000000017 x13: 0000000000000000 x12: 0000000000000040 x11: ffff000000579b60 x10: ffff000000579b62 x9 : ffff800008bbe370 x8 : ffff000000579dd0 x7 : 0000000000000000 x6 : ffff000000579e18 x5 : ffff000000579da8 x4 : ffff800008ca0000 x3 : ffff800008ca0188 x2 : 0000000013033204 x1 : ffff000009034c00 x0 : ffff8000087eadf0 Call trace: free_irq+0x300/0x340 devm_irq_release+0x14/0x20 devres_release_all+0xa0/0x100 device_unbind_cleanup+0x14/0x60 really_probe+0x198/0x2d4 __driver_probe_device+0x74/0xdc driver_probe_device+0x3c/0x110 __driver_attach+0x8c/0x190 bus_for_each_dev+0x6c/0xc0 driver_attach+0x20/0x30 bus_add_driver+0x148/0x1fc driver_register+0x74/0x120 __platform_driver_register+0x24/0x30 safexcel_init+0x48/0x1000 [crypto_safexcel] do_one_initcall+0x4c/0x1b0 do_init_module+0x44/0x1cc load_module+0x1724/0x1be4 __do_sys_finit_module+0xbc/0x110 __arm64_sys_finit_module+0x1c/0x24 invoke_syscall+0x44/0x110 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x20/0x80 el0_svc+0x14/0x4c el0t_64_sync_handler+0xb0/0xb4 el0t_64_sync+0x148/0x14c ---[ end trace 0000000000000000 ]---
CVE-2023-54131 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rt2x00: Fix memory leak when handling surveys When removing a rt2x00 device, its associated channel surveys are not freed, causing a memory leak observable with kmemleak: unreferenced object 0xffff9620f0881a00 (size 512): comm "systemd-udevd", pid 2290, jiffies 4294906974 (age 33.768s) hex dump (first 32 bytes): 70 44 12 00 00 00 00 00 92 8a 00 00 00 00 00 00 pD.............. 00 00 00 00 00 00 00 00 ab 87 01 00 00 00 00 00 ................ backtrace: [<ffffffffb0ed858b>] __kmalloc+0x4b/0x130 [<ffffffffc1b0f29b>] rt2800_probe_hw+0xc2b/0x1380 [rt2800lib] [<ffffffffc1a9496e>] rt2800usb_probe_hw+0xe/0x60 [rt2800usb] [<ffffffffc1ae491a>] rt2x00lib_probe_dev+0x21a/0x7d0 [rt2x00lib] [<ffffffffc1b3b83e>] rt2x00usb_probe+0x1be/0x980 [rt2x00usb] [<ffffffffc05981e2>] usb_probe_interface+0xe2/0x310 [usbcore] [<ffffffffb13be2d5>] really_probe+0x1a5/0x410 [<ffffffffb13be5c8>] __driver_probe_device+0x78/0x180 [<ffffffffb13be6fe>] driver_probe_device+0x1e/0x90 [<ffffffffb13be972>] __driver_attach+0xd2/0x1c0 [<ffffffffb13bbc57>] bus_for_each_dev+0x77/0xd0 [<ffffffffb13bd2a2>] bus_add_driver+0x112/0x210 [<ffffffffb13bfc6c>] driver_register+0x5c/0x120 [<ffffffffc0596ae8>] usb_register_driver+0x88/0x150 [usbcore] [<ffffffffb0c011c4>] do_one_initcall+0x44/0x220 [<ffffffffb0d6134c>] do_init_module+0x4c/0x220 Fix this by freeing the channel surveys on device removal. Tested with a RT3070 based USB wireless adapter.
CVE-2023-54132 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: erofs: stop parsing non-compact HEAD index if clusterofs is invalid Syzbot generated a crafted image [1] with a non-compact HEAD index of clusterofs 33024 while valid numbers should be 0 ~ lclustersize-1, which causes the following unexpected behavior as below: BUG: unable to handle page fault for address: fffff52101a3fff9 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 23ffed067 P4D 23ffed067 PUD 0 Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 4398 Comm: kworker/u5:1 Not tainted 6.3.0-rc6-syzkaller-g09a9639e56c0 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023 Workqueue: erofs_worker z_erofs_decompressqueue_work RIP: 0010:z_erofs_decompress_queue+0xb7e/0x2b40 ... Call Trace: <TASK> z_erofs_decompressqueue_work+0x99/0xe0 process_one_work+0x8f6/0x1170 worker_thread+0xa63/0x1210 kthread+0x270/0x300 ret_from_fork+0x1f/0x30 Note that normal images or images using compact indexes are not impacted. Let's fix this now. [1] https://lore.kernel.org/r/000000000000ec75b005ee97fbaa@google.com
CVE-2025-68359 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix double free of qgroup record after failure to add delayed ref head In the previous code it was possible to incur into a double kfree() scenario when calling add_delayed_ref_head(). This could happen if the record was reported to already exist in the btrfs_qgroup_trace_extent_nolock() call, but then there was an error later on add_delayed_ref_head(). In this case, since add_delayed_ref_head() returned an error, the caller went to free the record. Since add_delayed_ref_head() couldn't set this kfree'd pointer to NULL, then kfree() would have acted on a non-NULL 'record' object which was pointing to memory already freed by the callee. The problem comes from the fact that the responsibility to kfree the object is on both the caller and the callee at the same time. Hence, the fix for this is to shift the ownership of the 'qrecord' object out of the add_delayed_ref_head(). That is, we will never attempt to kfree() the given object inside of this function, and will expect the caller to act on the 'qrecord' object on its own. The only exception where the 'qrecord' object cannot be kfree'd is if it was inserted into the tracing logic, for which we already have the 'qrecord_inserted_ret' boolean to account for this. Hence, the caller has to kfree the object only if add_delayed_ref_head() reports not to have inserted it on the tracing logic. As a side-effect of the above, we must guarantee that 'qrecord_inserted_ret' is properly initialized at the start of the function, not at the end, and then set when an actual insert happens. This way we avoid 'qrecord_inserted_ret' having an invalid value on an early exit. The documentation from the add_delayed_ref_head() has also been updated to reflect on the exact ownership of the 'qrecord' object.
CVE-2025-68363 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Check skb->transport_header is set in bpf_skb_check_mtu The bpf_skb_check_mtu helper needs to use skb->transport_header when the BPF_MTU_CHK_SEGS flag is used: bpf_skb_check_mtu(skb, ifindex, &mtu_len, 0, BPF_MTU_CHK_SEGS) The transport_header is not always set. There is a WARN_ON_ONCE report when CONFIG_DEBUG_NET is enabled + skb->gso_size is set + bpf_prog_test_run is used: WARNING: CPU: 1 PID: 2216 at ./include/linux/skbuff.h:3071 skb_gso_validate_network_len bpf_skb_check_mtu bpf_prog_3920e25740a41171_tc_chk_segs_flag # A test in the next patch bpf_test_run bpf_prog_test_run_skb For a normal ingress skb (not test_run), skb_reset_transport_header is performed but there is plan to avoid setting it as described in commit 2170a1f09148 ("net: no longer reset transport_header in __netif_receive_skb_core()"). This patch fixes the bpf helper by checking skb_transport_header_was_set(). The check is done just before skb->transport_header is used, to avoid breaking the existing bpf prog. The WARN_ON_ONCE is limited to bpf_prog_test_run, so targeting bpf-next.
CVE-2025-68366 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config unlock in nbd_genl_connect There is one use-after-free warning when running NBD_CMD_CONNECT and NBD_CLEAR_SOCK: nbd_genl_connect nbd_alloc_and_init_config // config_refs=1 nbd_start_device // config_refs=2 set NBD_RT_HAS_CONFIG_REF open nbd // config_refs=3 recv_work done // config_refs=2 NBD_CLEAR_SOCK // config_refs=1 close nbd // config_refs=0 refcount_inc -> uaf ------------[ cut here ]------------ refcount_t: addition on 0; use-after-free. WARNING: CPU: 24 PID: 1014 at lib/refcount.c:25 refcount_warn_saturate+0x12e/0x290 nbd_genl_connect+0x16d0/0x1ab0 genl_family_rcv_msg_doit+0x1f3/0x310 genl_rcv_msg+0x44a/0x790 The issue can be easily reproduced by adding a small delay before refcount_inc(&nbd->config_refs) in nbd_genl_connect(): mutex_unlock(&nbd->config_lock); if (!ret) { set_bit(NBD_RT_HAS_CONFIG_REF, &config->runtime_flags); + printk("before sleep\n"); + mdelay(5 * 1000); + printk("after sleep\n"); refcount_inc(&nbd->config_refs); nbd_connect_reply(info, nbd->index); }
CVE-2025-68369 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: init run lock for extend inode After setting the inode mode of $Extend to a regular file, executing the truncate system call will enter the do_truncate() routine, causing the run_lock uninitialized error reported by syzbot. Prior to patch 4e8011ffec79, if the inode mode of $Extend was not set to a regular file, the do_truncate() routine would not be entered. Add the run_lock initialization when loading $Extend. syzbot reported: INFO: trying to register non-static key. Call Trace: dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 assign_lock_key+0x133/0x150 kernel/locking/lockdep.c:984 register_lock_class+0x105/0x320 kernel/locking/lockdep.c:1299 __lock_acquire+0x99/0xd20 kernel/locking/lockdep.c:5112 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_write+0x96/0x1f0 kernel/locking/rwsem.c:1590 ntfs_set_size+0x140/0x200 fs/ntfs3/inode.c:860 ntfs_extend+0x1d9/0x970 fs/ntfs3/file.c:387 ntfs_setattr+0x2e8/0xbe0 fs/ntfs3/file.c:808
CVE-2025-68371 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: smartpqi: Fix device resources accessed after device removal Correct possible race conditions during device removal. Previously, a scheduled work item to reset a LUN could still execute after the device was removed, leading to use-after-free and other resource access issues. This race condition occurs because the abort handler may schedule a LUN reset concurrently with device removal via sdev_destroy(), leading to use-after-free and improper access to freed resources. - Check in the device reset handler if the device is still present in the controller's SCSI device list before running; if not, the reset is skipped. - Cancel any pending TMF work that has not started in sdev_destroy(). - Ensure device freeing in sdev_destroy() is done while holding the LUN reset mutex to avoid races with ongoing resets.
CVE-2025-68372 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config put in recv_work There is one uaf issue in recv_work when running NBD_CLEAR_SOCK and NBD_CMD_RECONFIGURE: nbd_genl_connect // conf_ref=2 (connect and recv_work A) nbd_open // conf_ref=3 recv_work A done // conf_ref=2 NBD_CLEAR_SOCK // conf_ref=1 nbd_genl_reconfigure // conf_ref=2 (trigger recv_work B) close nbd // conf_ref=1 recv_work B config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Or only running NBD_CLEAR_SOCK: nbd_genl_connect // conf_ref=2 nbd_open // conf_ref=3 NBD_CLEAR_SOCK // conf_ref=2 close nbd nbd_release config_put // conf_ref=1 recv_work config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Commit 87aac3a80af5 ("nbd: call nbd_config_put() before notifying the waiter") moved nbd_config_put() to run before waking up the waiter in recv_work, in order to ensure that nbd_start_device_ioctl() would not be woken up while nbd->task_recv was still uncleared. However, in nbd_start_device_ioctl(), after being woken up it explicitly calls flush_workqueue() to make sure all current works are finished. Therefore, there is no need to move the config put ahead of the wakeup. Move nbd_config_put() to the end of recv_work, so that the reference is held for the whole lifetime of the worker thread. This makes sure the config cannot be freed while recv_work is still running, even if clear + reconfigure interleave. In addition, we don't need to worry about recv_work dropping the last nbd_put (which causes deadlock): path A (netlink with NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=1 (trigger recv_work) open nbd // nbd_refs=2 NBD_CLEAR_SOCK close nbd nbd_release nbd_disconnect_and_put flush_workqueue // recv_work done nbd_config_put nbd_put // nbd_refs=1 nbd_put // nbd_refs=0 queue_work path B (netlink without NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=2 (trigger recv_work) open nbd // nbd_refs=3 NBD_CLEAR_SOCK // conf_refs=2 close nbd nbd_release nbd_config_put // conf_refs=1 nbd_put // nbd_refs=2 recv_work done // conf_refs=0, nbd_refs=1 rmmod // nbd_refs=0 Depends-on: e2daec488c57 ("nbd: Fix hungtask when nbd_config_put")
CVE-2025-68379 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix null deref on srq->rq.queue after resize failure A NULL pointer dereference can occur in rxe_srq_chk_attr() when ibv_modify_srq() is invoked twice in succession under certain error conditions. The first call may fail in rxe_queue_resize(), which leads rxe_srq_from_attr() to set srq->rq.queue = NULL. The second call then triggers a crash (null deref) when accessing srq->rq.queue->buf->index_mask. Call Trace: <TASK> rxe_modify_srq+0x170/0x480 [rdma_rxe] ? __pfx_rxe_modify_srq+0x10/0x10 [rdma_rxe] ? uverbs_try_lock_object+0x4f/0xa0 [ib_uverbs] ? rdma_lookup_get_uobject+0x1f0/0x380 [ib_uverbs] ib_uverbs_modify_srq+0x204/0x290 [ib_uverbs] ? __pfx_ib_uverbs_modify_srq+0x10/0x10 [ib_uverbs] ? tryinc_node_nr_active+0xe6/0x150 ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x2c0/0x470 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_run_method+0x55a/0x6e0 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ib_uverbs_cmd_verbs+0x54d/0x800 [ib_uverbs] ? __pfx_ib_uverbs_cmd_verbs+0x10/0x10 [ib_uverbs] ? __pfx___raw_spin_lock_irqsave+0x10/0x10 ? __pfx_do_vfs_ioctl+0x10/0x10 ? ioctl_has_perm.constprop.0.isra.0+0x2c7/0x4c0 ? __pfx_ioctl_has_perm.constprop.0.isra.0+0x10/0x10 ib_uverbs_ioctl+0x13e/0x220 [ib_uverbs] ? __pfx_ib_uverbs_ioctl+0x10/0x10 [ib_uverbs] __x64_sys_ioctl+0x138/0x1c0 do_syscall_64+0x82/0x250 ? fdget_pos+0x58/0x4c0 ? ksys_write+0xf3/0x1c0 ? __pfx_ksys_write+0x10/0x10 ? do_syscall_64+0xc8/0x250 ? __pfx_vm_mmap_pgoff+0x10/0x10 ? fget+0x173/0x230 ? fput+0x2a/0x80 ? ksys_mmap_pgoff+0x224/0x4c0 ? do_syscall_64+0xc8/0x250 ? do_user_addr_fault+0x37b/0xfe0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVE-2025-68380 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix peer HE MCS assignment In ath11k_wmi_send_peer_assoc_cmd(), peer's transmit MCS is sent to firmware as receive MCS while peer's receive MCS sent as transmit MCS, which goes against firmwire's definition. While connecting to a misbehaved AP that advertises 0xffff (meaning not supported) for 160 MHz transmit MCS map, firmware crashes due to 0xffff is assigned to he_mcs->rx_mcs_set field. Ext Tag: HE Capabilities [...] Supported HE-MCS and NSS Set [...] Rx and Tx MCS Maps 160 MHz [...] Tx HE-MCS Map 160 MHz: 0xffff Swap the assignment to fix this issue. As the HE rate control mask is meant to limit our own transmit MCS, it needs to go via he_mcs->rx_mcs_set field. With the aforementioned swapping done, change is needed as well to apply it to the peer's receive MCS. Tested-on: WCN6855 hw2.1 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.41 Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1
CVE-2025-15108 2025-12-29 3.7 Low
A vulnerability was detected in PandaXGO PandaX up to fb8ff40f7ce5dfebdf66306c6d85625061faf7e5. This affects an unknown function of the file config.yml of the component JWT Secret Handler. The manipulation of the argument key results in use of hard-coded cryptographic key . The attack may be performed from remote. This attack is characterized by high complexity. The exploitability is reported as difficult. The exploit is now public and may be used. This product utilizes a rolling release system for continuous delivery, and as such, version information for affected or updated releases is not disclosed. The project was informed of the problem early through an issue report but has not responded yet.
CVE-2018-25127 2025-12-29 5.3 Medium
SOCA Access Control System 180612 contains a cross-site request forgery vulnerability that allows attackers to perform administrative actions without proper request validation. Attackers can craft malicious web pages that submit forged requests to create admin accounts by tricking logged-in users into visiting a malicious site.
CVE-2018-25128 2025-12-29 8.2 High
SOCA Access Control System 180612 contains multiple SQL injection vulnerabilities that allow attackers to manipulate database queries through unvalidated POST parameters. Attackers can bypass authentication, retrieve password hashes, and gain administrative access with full system privileges by exploiting injection flaws in Login.php and Card_Edit_GetJson.php.
CVE-2018-25130 2025-12-29 6.2 Medium
Beward Intercom 2.3.1 contains a credentials disclosure vulnerability that allows local attackers to access plain-text authentication credentials stored in an unencrypted database file. Attackers can read the BEWARD.INTERCOM.FDB file to extract usernames and passwords, enabling unauthorized access to IP cameras and door stations.
CVE-2018-25134 2025-12-29 9.8 Critical
Synaccess netBooter NP-02x/NP-08x 6.8 contains an authentication bypass vulnerability in the webNewAcct.cgi script that allows unauthenticated attackers to create admin user accounts. Attackers can exploit the missing control check by sending crafted POST requests to create administrative accounts and gain unauthorized control over power supply management.
CVE-2018-25136 2025-12-29 7.5 High
FLIR Brickstream 3D+ 2.1.742.1842 contains an unauthenticated vulnerability that allows remote attackers to access live video streams without credentials. Attackers can retrieve video stream images by directly accessing multiple image endpoints like middleImage.jpg, rightimage.jpg, and leftimage.jpg.
CVE-2018-25140 2025-12-29 7.5 High
FLIR thermal traffic cameras contain an unauthenticated device manipulation vulnerability in their WebSocket implementation that allows attackers to bypass authentication and authorization controls. Attackers can directly modify device configurations, access system information, and potentially initiate denial of service by sending crafted WebSocket messages without authentication.
CVE-2018-25141 2025-12-29 7.5 High
FLIR thermal traffic cameras contain an unauthenticated vulnerability that allows remote attackers to access live video streams without credentials. Attackers can directly retrieve video streams by accessing specific endpoints like /live.mjpeg, /snapshot.jpg, and RTSP streaming URLs without authentication.
CVE-2018-25142 2025-12-29 9.8 Critical
NovaRad NovaPACS Diagnostics Viewer 8.5.19.75 contains an unauthenticated XML External Entity (XXE) injection vulnerability in XML preference import settings. Attackers can craft malicious XML files with DTD parameter entities to retrieve arbitrary system files through an out-of-band channel attack.