Search

Search Results (324292 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53992 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: ocb: don't leave if not joined If there's no OCB state, don't ask the driver/mac80211 to leave, since that's just confusing. Since set/clear the chandef state, that's a simple check.
CVE-2023-53991 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Disallow unallocated resources to be returned In the event that the topology requests resources that have not been created by the system (because they are typically not represented in dpu_mdss_cfg ^1), the resource(s) in global_state (in this case DSC blocks, until their allocation/assignment is being sanity-checked in "drm/msm/dpu: Reject topologies for which no DSC blocks are available") remain NULL but will still be returned out of dpu_rm_get_assigned_resources, where the caller expects to get an array containing num_blks valid pointers (but instead gets these NULLs). To prevent this from happening, where null-pointer dereferences typically result in a hard-to-debug platform lockup, num_blks shouldn't increase past NULL blocks and will print an error and break instead. After all, max_blks represents the static size of the maximum number of blocks whereas the actual amount varies per platform. ^1: which can happen after a git rebase ended up moving additions to _dpu_cfg to a different struct which has the same patch context. Patchwork: https://patchwork.freedesktop.org/patch/517636/
CVE-2023-53990 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: SMB3: Add missing locks to protect deferred close file list cifs_del_deferred_close function has a critical section which modifies the deferred close file list. We must acquire deferred_lock before calling cifs_del_deferred_close function.
CVE-2023-53989 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: arm64: mm: fix VA-range sanity check Both create_mapping_noalloc() and update_mapping_prot() sanity-check their 'virt' parameter, but the check itself doesn't make much sense. The condition used today appears to be a historical accident. The sanity-check condition: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } ... can only be true for the KASAN shadow region or the module region, and there's no reason to exclude these specifically for creating and updateing mappings. When arm64 support was first upstreamed in commit: c1cc1552616d0f35 ("arm64: MMU initialisation") ... the condition was: if (virt < VMALLOC_START) { [ ... warning here ... ] return; } At the time, VMALLOC_START was the lowest kernel address, and this was checking whether 'virt' would be translated via TTBR1. Subsequently in commit: 14c127c957c1c607 ("arm64: mm: Flip kernel VA space") ... the condition was changed to: if ((virt >= VA_START) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } This appear to have been a thinko. The commit moved the linear map to the bottom of the kernel address space, with VMALLOC_START being at the halfway point. The old condition would warn for changes to the linear map below this, and at the time VA_START was the end of the linear map. Subsequently we cleaned up the naming of VA_START in commit: 77ad4ce69321abbe ("arm64: memory: rename VA_START to PAGE_END") ... keeping the erroneous condition as: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } Correct the condition to check against the start of the TTBR1 address space, which is currently PAGE_OFFSET. This simplifies the logic, and more clearly matches the "outside kernel range" message in the warning.
CVE-2023-53988 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix slab-out-of-bounds read in hdr_delete_de() Here is a BUG report from syzbot: BUG: KASAN: slab-out-of-bounds in hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806 Read of size 16842960 at addr ffff888079cc0600 by task syz-executor934/3631 Call Trace: memmove+0x25/0x60 mm/kasan/shadow.c:54 hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806 indx_delete_entry+0x74f/0x3670 fs/ntfs3/index.c:2193 ni_remove_name+0x27a/0x980 fs/ntfs3/frecord.c:2910 ntfs_unlink_inode+0x3d4/0x720 fs/ntfs3/inode.c:1712 ntfs_rename+0x41a/0xcb0 fs/ntfs3/namei.c:276 Before using the meta-data in struct INDEX_HDR, we need to check index header valid or not. Otherwise, the corruptedi (or malicious) fs image can cause out-of-bounds access which could make kernel panic.
CVE-2023-53987 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ping: Fix potentail NULL deref for /proc/net/icmp. After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid of rwlock"), we use RCU for ping sockets, but we should use spinlock for /proc/net/icmp to avoid a potential NULL deref mentioned in the previous patch. Let's go back to using spinlock there. Note we can convert ping sockets to use hlist instead of hlist_nulls because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets.
CVE-2023-53986 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: mips: bmips: BCM6358: disable RAC flush for TP1 RAC flush causes kernel panics on BCM6358 with EHCI/OHCI when booting from TP1: [ 3.881739] usb 1-1: new high-speed USB device number 2 using ehci-platform [ 3.895011] Reserved instruction in kernel code[#1]: [ 3.900113] CPU: 0 PID: 1 Comm: init Not tainted 5.10.16 #0 [ 3.905829] $ 0 : 00000000 10008700 00000000 77d94060 [ 3.911238] $ 4 : 7fd1f088 00000000 81431cac 81431ca0 [ 3.916641] $ 8 : 00000000 ffffefff 8075cd34 00000000 [ 3.922043] $12 : 806f8d40 f3e812b7 00000000 000d9aaa [ 3.927446] $16 : 7fd1f068 7fd1f080 7ff559b8 81428470 [ 3.932848] $20 : 00000000 00000000 55590000 77d70000 [ 3.938251] $24 : 00000018 00000010 [ 3.943655] $28 : 81430000 81431e60 81431f28 800157fc [ 3.949058] Hi : 00000000 [ 3.952013] Lo : 00000000 [ 3.955019] epc : 80015808 setup_sigcontext+0x54/0x24c [ 3.960464] ra : 800157fc setup_sigcontext+0x48/0x24c [ 3.965913] Status: 10008703 KERNEL EXL IE [ 3.970216] Cause : 00800028 (ExcCode 0a) [ 3.974340] PrId : 0002a010 (Broadcom BMIPS4350) [ 3.979170] Modules linked in: ohci_platform ohci_hcd fsl_mph_dr_of ehci_platform ehci_fsl ehci_hcd gpio_button_hotplug usbcore nls_base usb_common [ 3.992907] Process init (pid: 1, threadinfo=(ptrval), task=(ptrval), tls=77e22ec8) [ 4.000776] Stack : 81431ef4 7fd1f080 81431f28 81428470 7fd1f068 81431edc 7ff559b8 81428470 [ 4.009467] 81431f28 7fd1f080 55590000 77d70000 77d5498c 80015c70 806f0000 8063ae74 [ 4.018149] 08100002 81431f28 0000000a 08100002 81431f28 0000000a 77d6b418 00000003 [ 4.026831] ffffffff 80016414 80080734 81431ecc 81431ecc 00000001 00000000 04000000 [ 4.035512] 77d54874 00000000 00000000 00000000 00000000 00000012 00000002 00000000 [ 4.044196] ... [ 4.046706] Call Trace: [ 4.049238] [<80015808>] setup_sigcontext+0x54/0x24c [ 4.054356] [<80015c70>] setup_frame+0xdc/0x124 [ 4.059015] [<80016414>] do_notify_resume+0x1dc/0x288 [ 4.064207] [<80011b50>] work_notifysig+0x10/0x18 [ 4.069036] [ 4.070538] Code: 8fc300b4 00001025 26240008 <ac820000> ac830004 3c048063 0c0228aa 24846a00 26240010 [ 4.080686] [ 4.082517] ---[ end trace 22a8edb41f5f983b ]--- [ 4.087374] Kernel panic - not syncing: Fatal exception [ 4.092753] Rebooting in 1 seconds.. Because the bootloader (CFE) is not initializing the Read-ahead cache properly on the second thread (TP1). Since the RAC was not initialized properly, we should avoid flushing it at the risk of corrupting the instruction stream as seen in the trace above.
CVE-2023-53867 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ceph: fix potential use-after-free bug when trimming caps When trimming the caps and just after the 'session->s_cap_lock' is released in ceph_iterate_session_caps() the cap maybe removed by another thread, and when using the stale cap memory in the callbacks it will trigger use-after-free crash. We need to check the existence of the cap just after the 'ci->i_ceph_lock' being acquired. And do nothing if it's already removed.
CVE-2022-50711 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: mtk_eth_soc: fix possible memory leak in mtk_probe() If mtk_wed_add_hw() has been called, mtk_wed_exit() needs be called in error path or removing module to free the memory allocated in mtk_wed_add_hw().
CVE-2022-50710 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ice: set tx_tstamps when creating new Tx rings via ethtool When the user changes the number of queues via ethtool, the driver allocates new rings. This allocation did not initialize tx_tstamps. This results in the tx_tstamps field being zero (due to kcalloc allocation), and would result in a NULL pointer dereference when attempting a transmit timestamp on the new ring.
CVE-2022-50709 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg() syzbot is reporting uninit value at ath9k_htc_rx_msg() [1], for ioctl(USB_RAW_IOCTL_EP_WRITE) can call ath9k_hif_usb_rx_stream() with pkt_len = 0 but ath9k_hif_usb_rx_stream() uses __dev_alloc_skb(pkt_len + 32, GFP_ATOMIC) based on an assumption that pkt_len is valid. As a result, ath9k_hif_usb_rx_stream() allocates skb with uninitialized memory and ath9k_htc_rx_msg() is reading from uninitialized memory. Since bytes accessed by ath9k_htc_rx_msg() is not known until ath9k_htc_rx_msg() is called, it would be difficult to check minimal valid pkt_len at "if (pkt_len > 2 * MAX_RX_BUF_SIZE) {" line in ath9k_hif_usb_rx_stream(). We have two choices. One is to workaround by adding __GFP_ZERO so that ath9k_htc_rx_msg() sees 0 if pkt_len is invalid. The other is to let ath9k_htc_rx_msg() validate pkt_len before accessing. This patch chose the latter. Note that I'm not sure threshold condition is correct, for I can't find details on possible packet length used by this protocol.
CVE-2022-50708 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: HSI: ssi_protocol: fix potential resource leak in ssip_pn_open() ssip_pn_open() claims the HSI client's port with hsi_claim_port(). When hsi_register_port_event() gets some error and returns a negetive value, the HSI client's port should be released with hsi_release_port(). Fix it by calling hsi_release_port() when hsi_register_port_event() fails.
CVE-2022-50707 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: virtio-crypto: fix memory leak in virtio_crypto_alg_skcipher_close_session() 'vc_ctrl_req' is alloced in virtio_crypto_alg_skcipher_close_session(), and should be freed in the invalid ctrl_status->status error handling case. Otherwise there is a memory leak.
CVE-2022-50706 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: net/ieee802154: don't warn zero-sized raw_sendmsg() syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1], for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting __dev_queue_xmit() with skb->len == 0. Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was able to return 0, don't call __dev_queue_xmit() if packet length is 0. ---------- #include <sys/socket.h> #include <netinet/in.h> int main(int argc, char *argv[]) { struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) }; struct iovec iov = { }; struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 }; sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0); return 0; } ---------- Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't redirect packets with invalid pkt_len") should be reverted, for skb->len == 0 was acceptable for at least PF_IEEE802154 socket.
CVE-2022-50705 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: io_uring/rw: defer fsnotify calls to task context We can't call these off the kiocb completion as that might be off soft/hard irq context. Defer the calls to when we process the task_work for this request. That avoids valid complaints like: stack backtrace: CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.0.0-rc6-syzkaller-00321-g105a36f3694e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_usage_bug kernel/locking/lockdep.c:3961 [inline] valid_state kernel/locking/lockdep.c:3973 [inline] mark_lock_irq kernel/locking/lockdep.c:4176 [inline] mark_lock.part.0.cold+0x18/0xd8 kernel/locking/lockdep.c:4632 mark_lock kernel/locking/lockdep.c:4596 [inline] mark_usage kernel/locking/lockdep.c:4527 [inline] __lock_acquire+0x11d9/0x56d0 kernel/locking/lockdep.c:5007 lock_acquire kernel/locking/lockdep.c:5666 [inline] lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631 __fs_reclaim_acquire mm/page_alloc.c:4674 [inline] fs_reclaim_acquire+0x115/0x160 mm/page_alloc.c:4688 might_alloc include/linux/sched/mm.h:271 [inline] slab_pre_alloc_hook mm/slab.h:700 [inline] slab_alloc mm/slab.c:3278 [inline] __kmem_cache_alloc_lru mm/slab.c:3471 [inline] kmem_cache_alloc+0x39/0x520 mm/slab.c:3491 fanotify_alloc_fid_event fs/notify/fanotify/fanotify.c:580 [inline] fanotify_alloc_event fs/notify/fanotify/fanotify.c:813 [inline] fanotify_handle_event+0x1130/0x3f40 fs/notify/fanotify/fanotify.c:948 send_to_group fs/notify/fsnotify.c:360 [inline] fsnotify+0xafb/0x1680 fs/notify/fsnotify.c:570 __fsnotify_parent+0x62f/0xa60 fs/notify/fsnotify.c:230 fsnotify_parent include/linux/fsnotify.h:77 [inline] fsnotify_file include/linux/fsnotify.h:99 [inline] fsnotify_access include/linux/fsnotify.h:309 [inline] __io_complete_rw_common+0x485/0x720 io_uring/rw.c:195 io_complete_rw+0x1a/0x1f0 io_uring/rw.c:228 iomap_dio_complete_work fs/iomap/direct-io.c:144 [inline] iomap_dio_bio_end_io+0x438/0x5e0 fs/iomap/direct-io.c:178 bio_endio+0x5f9/0x780 block/bio.c:1564 req_bio_endio block/blk-mq.c:695 [inline] blk_update_request+0x3fc/0x1300 block/blk-mq.c:825 scsi_end_request+0x7a/0x9a0 drivers/scsi/scsi_lib.c:541 scsi_io_completion+0x173/0x1f70 drivers/scsi/scsi_lib.c:971 scsi_complete+0x122/0x3b0 drivers/scsi/scsi_lib.c:1438 blk_complete_reqs+0xad/0xe0 block/blk-mq.c:1022 __do_softirq+0x1d3/0x9c6 kernel/softirq.c:571 invoke_softirq kernel/softirq.c:445 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:650 irq_exit_rcu+0x5/0x20 kernel/softirq.c:662 common_interrupt+0xa9/0xc0 arch/x86/kernel/irq.c:240
CVE-2022-50704 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: USB: gadget: Fix use-after-free during usb config switch In the process of switching USB config from rndis to other config, if the hardware does not support the ->pullup callback, or the hardware encounters a low probability fault, both of them may cause the ->pullup callback to fail, which will then cause a system panic (use after free). The gadget drivers sometimes need to be unloaded regardless of the hardware's behavior. Analysis as follows: ======================================================================= (1) write /config/usb_gadget/g1/UDC "none" gether_disconnect+0x2c/0x1f8 rndis_disable+0x4c/0x74 composite_disconnect+0x74/0xb0 configfs_composite_disconnect+0x60/0x7c usb_gadget_disconnect+0x70/0x124 usb_gadget_unregister_driver+0xc8/0x1d8 gadget_dev_desc_UDC_store+0xec/0x1e4 (2) rm /config/usb_gadget/g1/configs/b.1/f1 rndis_deregister+0x28/0x54 rndis_free+0x44/0x7c usb_put_function+0x14/0x1c config_usb_cfg_unlink+0xc4/0xe0 configfs_unlink+0x124/0x1c8 vfs_unlink+0x114/0x1dc (3) rmdir /config/usb_gadget/g1/functions/rndis.gs4 panic+0x1fc/0x3d0 do_page_fault+0xa8/0x46c do_mem_abort+0x3c/0xac el1_sync_handler+0x40/0x78 0xffffff801138f880 rndis_close+0x28/0x34 eth_stop+0x74/0x110 dev_close_many+0x48/0x194 rollback_registered_many+0x118/0x814 unregister_netdev+0x20/0x30 gether_cleanup+0x1c/0x38 rndis_attr_release+0xc/0x14 kref_put+0x74/0xb8 configfs_rmdir+0x314/0x374 If gadget->ops->pullup() return an error, function rndis_close() will be called, then it will causes a use-after-free problem. =======================================================================
CVE-2022-50703 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: smsm: Fix refcount leak bugs in qcom_smsm_probe() There are two refcount leak bugs in qcom_smsm_probe(): (1) The 'local_node' is escaped out from for_each_child_of_node() as the break of iteration, we should call of_node_put() for it in error path or when it is not used anymore. (2) The 'node' is escaped out from for_each_available_child_of_node() as the 'goto', we should call of_node_put() for it in goto target.
CVE-2022-50702 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: vdpa_sim: fix possible memory leak in vdpasim_net_init() and vdpasim_blk_init() Inject fault while probing module, if device_register() fails in vdpasim_net_init() or vdpasim_blk_init(), but the refcount of kobject is not decreased to 0, the name allocated in dev_set_name() is leaked. Fix this by calling put_device(), so that name can be freed in callback function kobject_cleanup(). (vdpa_sim_net) unreferenced object 0xffff88807eebc370 (size 16): comm "modprobe", pid 3848, jiffies 4362982860 (age 18.153s) hex dump (first 16 bytes): 76 64 70 61 73 69 6d 5f 6e 65 74 00 6b 6b 6b a5 vdpasim_net.kkk. backtrace: [<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150 [<ffffffff81731d53>] kstrdup+0x33/0x60 [<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110 [<ffffffff82d87aab>] dev_set_name+0xab/0xe0 [<ffffffff82d91a23>] device_add+0xe3/0x1a80 [<ffffffffa0270013>] 0xffffffffa0270013 [<ffffffff81001c27>] do_one_initcall+0x87/0x2e0 [<ffffffff813739cb>] do_init_module+0x1ab/0x640 [<ffffffff81379d20>] load_module+0x5d00/0x77f0 [<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0 [<ffffffff83c4d505>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 (vdpa_sim_blk) unreferenced object 0xffff8881070c1250 (size 16): comm "modprobe", pid 6844, jiffies 4364069319 (age 17.572s) hex dump (first 16 bytes): 76 64 70 61 73 69 6d 5f 62 6c 6b 00 6b 6b 6b a5 vdpasim_blk.kkk. backtrace: [<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150 [<ffffffff81731d53>] kstrdup+0x33/0x60 [<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110 [<ffffffff82d87aab>] dev_set_name+0xab/0xe0 [<ffffffff82d91a23>] device_add+0xe3/0x1a80 [<ffffffffa0220013>] 0xffffffffa0220013 [<ffffffff81001c27>] do_one_initcall+0x87/0x2e0 [<ffffffff813739cb>] do_init_module+0x1ab/0x640 [<ffffffff81379d20>] load_module+0x5d00/0x77f0 [<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0 [<ffffffff83c4d505>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2022-50701 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host SDIO may need addtional 511 bytes to align bus operation. If the tailroom of this skb is not big enough, we would access invalid memory region. For low level operation, increase skb size to keep valid memory access in SDIO host. Error message: [69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0 [69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451 [69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1 [69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300] [69.951] Call Trace: [69.951] <TASK> [69.952] dump_stack_lvl+0x49/0x63 [69.952] print_report+0x171/0x4a8 [69.952] kasan_report+0xb4/0x130 [69.952] kasan_check_range+0x149/0x1e0 [69.952] memcpy+0x24/0x70 [69.952] sg_copy_buffer+0xe9/0x1a0 [69.952] sg_copy_to_buffer+0x12/0x20 [69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300] [69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300] [69.952] process_one_work+0x7ee/0x1320 [69.952] worker_thread+0x53c/0x1240 [69.952] kthread+0x2b8/0x370 [69.952] ret_from_fork+0x1f/0x30 [69.952] </TASK> [69.952] Allocated by task 854: [69.952] kasan_save_stack+0x26/0x50 [69.952] kasan_set_track+0x25/0x30 [69.952] kasan_save_alloc_info+0x1b/0x30 [69.952] __kasan_kmalloc+0x87/0xa0 [69.952] __kmalloc_node_track_caller+0x63/0x150 [69.952] kmalloc_reserve+0x31/0xd0 [69.952] __alloc_skb+0xfc/0x2b0 [69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76] [69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76] [69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76] [69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib] [69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib] [69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common] [69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s] [69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common] [69.953] process_one_work+0x7ee/0x1320 [69.953] worker_thread+0x53c/0x1240 [69.953] kthread+0x2b8/0x370 [69.953] ret_from_fork+0x1f/0x30 [69.953] The buggy address belongs to the object at ffff88811c9ce800 which belongs to the cache kmalloc-2k of size 2048 [69.953] The buggy address is located 0 bytes to the right of 2048-byte region [ffff88811c9ce800, ffff88811c9cf000) [69.953] Memory state around the buggy address: [69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [69.953] ^ [69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
CVE-2022-50700 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: Delay the unmapping of the buffer On WCN3990, we are seeing a rare scenario where copy engine hardware is sending a copy complete interrupt to the host driver while still processing the buffer that the driver has sent, this is leading into an SMMU fault triggering kernel panic. This is happening on copy engine channel 3 (CE3) where the driver normally enqueues WMI commands to the firmware. Upon receiving a copy complete interrupt, host driver will immediately unmap and frees the buffer presuming that hardware has processed the buffer. In the issue case, upon receiving copy complete interrupt, host driver will unmap and free the buffer but since hardware is still accessing the buffer (which in this case got unmapped in parallel), SMMU hardware will trigger an SMMU fault resulting in a kernel panic. In order to avoid this, as a work around, add a delay before unmapping the copy engine source DMA buffer. This is conditionally done for WCN3990 and only for the CE3 channel where issue is seen. Below is the crash signature: wifi smmu error: kernel: [ 10.120965] arm-smmu 15000000.iommu: Unhandled context fault: fsr=0x402, iova=0x7fdfd8ac0, fsynr=0x500003,cbfrsynra=0xc1, cb=6 arm-smmu 15000000.iommu: Unhandled context fault:fsr=0x402, iova=0x7fe06fdc0, fsynr=0x710003, cbfrsynra=0xc1, cb=6 qcom-q6v5-mss 4080000.remoteproc: fatal error received: err_qdi.c:1040:EF:wlan_process:0x1:WLAN RT:0x2091: cmnos_thread.c:3998:Asserted in copy_engine.c:AXI_ERROR_DETECTED:2149 remoteproc remoteproc0: crash detected in 4080000.remoteproc: type fatal error <3> remoteproc remoteproc0: handling crash #1 in 4080000.remoteproc pc : __arm_lpae_unmap+0x500/0x514 lr : __arm_lpae_unmap+0x4bc/0x514 sp : ffffffc011ffb530 x29: ffffffc011ffb590 x28: 0000000000000000 x27: 0000000000000000 x26: 0000000000000004 x25: 0000000000000003 x24: ffffffc011ffb890 x23: ffffffa762ef9be0 x22: ffffffa77244ef00 x21: 0000000000000009 x20: 00000007fff7c000 x19: 0000000000000003 x18: 0000000000000000 x17: 0000000000000004 x16: ffffffd7a357d9f0 x15: 0000000000000000 x14: 00fd5d4fa7ffffff x13: 000000000000000e x12: 0000000000000000 x11: 00000000ffffffff x10: 00000000fffffe00 x9 : 000000000000017c x8 : 000000000000000c x7 : 0000000000000000 x6 : ffffffa762ef9000 x5 : 0000000000000003 x4 : 0000000000000004 x3 : 0000000000001000 x2 : 00000007fff7c000 x1 : ffffffc011ffb890 x0 : 0000000000000000 Call trace: __arm_lpae_unmap+0x500/0x514 __arm_lpae_unmap+0x4bc/0x514 __arm_lpae_unmap+0x4bc/0x514 arm_lpae_unmap_pages+0x78/0xa4 arm_smmu_unmap_pages+0x78/0x104 __iommu_unmap+0xc8/0x1e4 iommu_unmap_fast+0x38/0x48 __iommu_dma_unmap+0x84/0x104 iommu_dma_free+0x34/0x50 dma_free_attrs+0xa4/0xd0 ath10k_htt_rx_free+0xc4/0xf4 [ath10k_core] ath10k_core_stop+0x64/0x7c [ath10k_core] ath10k_halt+0x11c/0x180 [ath10k_core] ath10k_stop+0x54/0x94 [ath10k_core] drv_stop+0x48/0x1c8 [mac80211] ieee80211_do_open+0x638/0x77c [mac80211] ieee80211_open+0x48/0x5c [mac80211] __dev_open+0xb4/0x174 __dev_change_flags+0xc4/0x1dc dev_change_flags+0x3c/0x7c devinet_ioctl+0x2b4/0x580 inet_ioctl+0xb0/0x1b4 sock_do_ioctl+0x4c/0x16c compat_ifreq_ioctl+0x1cc/0x35c compat_sock_ioctl+0x110/0x2ac __arm64_compat_sys_ioctl+0xf4/0x3e0 el0_svc_common+0xb4/0x17c el0_svc_compat_handler+0x2c/0x58 el0_svc_compat+0x8/0x2c Tested-on: WCN3990 hw1.0 SNOC WLAN.HL.2.0-01387-QCAHLSWMTPLZ-1