| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: fix wrong ct->timeout value
(struct nf_conn)->timeout is an interval before the conntrack
confirmed. After confirmed, it becomes a timestamp.
It is observed that timeout of an unconfirmed conntrack:
- Set by calling ctnetlink_change_timeout(). As a result,
`nfct_time_stamp` was wrongly added to `ct->timeout` twice.
- Get by calling ctnetlink_dump_timeout(). As a result,
`nfct_time_stamp` was wrongly subtracted.
Call Trace:
<TASK>
dump_stack_lvl
ctnetlink_dump_timeout
__ctnetlink_glue_build
ctnetlink_glue_build
__nfqnl_enqueue_packet
nf_queue
nf_hook_slow
ip_mc_output
? __pfx_ip_finish_output
ip_send_skb
? __pfx_dst_output
udp_send_skb
udp_sendmsg
? __pfx_ip_generic_getfrag
sock_sendmsg
Separate the 2 cases in:
- Setting `ct->timeout` in __nf_ct_set_timeout().
- Getting `ct->timeout` in ctnetlink_dump_timeout().
Pablo appends:
Update ctnetlink to set up the timeout _after_ the IPS_CONFIRMED flag is
set on, otherwise conntrack creation via ctnetlink breaks.
Note that the problem described in this patch occurs since the
introduction of the nfnetlink_queue conntrack support, select a
sufficiently old Fixes: tag for -stable kernel to pick up this fix. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: exc3000 - properly stop timer on shutdown
We need to stop the timer on driver unbind or probe failures, otherwise
we get UAF/Oops. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add features attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa features attr to avoid
such bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
media: amphion: fix REVERSE_INULL issues reported by coverity
null-checking of a pointor is suggested before dereferencing it |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Add validation before accessing cgx and lmac
with the addition of new MAC blocks like CN10K RPM and CN10KB
RPM_USX, LMACs are noncontiguous and CGX blocks are also
noncontiguous. But during RVU driver initialization, the driver
is assuming they are contiguous and trying to access
cgx or lmac with their id which is resulting in kernel panic.
This patch fixes the issue by adding proper checks.
[ 23.219150] pc : cgx_lmac_read+0x38/0x70
[ 23.219154] lr : rvu_program_channels+0x3f0/0x498
[ 23.223852] sp : ffff000100d6fc80
[ 23.227158] x29: ffff000100d6fc80 x28: ffff00010009f880 x27:
000000000000005a
[ 23.234288] x26: ffff000102586768 x25: 0000000000002500 x24:
fffffffffff0f000 |
| A maliciously crafted HTML payload, stored in a part’s attribute and clicked by a user, can trigger a Stored Cross-site Scripting (XSS) vulnerability in the Autodesk Fusion desktop application. A malicious actor may leverage this vulnerability to read local files or execute arbitrary code in the context of the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel
stack overflow as shown below. This issue can be reproduced by enabling
CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=",
and then giving the following commands at the shell prompt:
# cd /sys/kernel/tracing/
# echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events
# echo 1 > events/kprobes/enable
This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes
blacklist using NOKPROBE_SYMBOL().
Insufficient stack space to handle exception!
ESR: 0x00000000f2000004 -- BRK (AArch64)
FAR: 0x0000ffffccf3e510
Task stack: [0xffff80000ad30000..0xffff80000ad38000]
IRQ stack: [0xffff800008050000..0xffff800008058000]
Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310]
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __rcu_irq_enter_check_tick+0x0/0x1b8
lr : ct_nmi_enter+0x11c/0x138
sp : ffff80000ad30080
x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000
x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000
x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148
x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c
x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809
x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000
x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001
x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4
x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000
Kernel panic - not syncing: kernel stack overflow
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xf8/0x108
show_stack+0x20/0x30
dump_stack_lvl+0x68/0x84
dump_stack+0x1c/0x38
panic+0x214/0x404
add_taint+0x0/0xf8
panic_bad_stack+0x144/0x160
handle_bad_stack+0x38/0x58
__bad_stack+0x78/0x7c
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
[...]
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
el1_interrupt+0x28/0x60
el1h_64_irq_handler+0x18/0x28
el1h_64_irq+0x64/0x68
__ftrace_set_clr_event_nolock+0x98/0x198
__ftrace_set_clr_event+0x58/0x80
system_enable_write+0x144/0x178
vfs_write+0x174/0x738
ksys_write+0xd0/0x188
__arm64_sys_write+0x4c/0x60
invoke_syscall+0x64/0x180
el0_svc_common.constprop.0+0x84/0x160
do_el0_svc+0x48/0xe8
el0_svc+0x34/0xd0
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x190/0x194
SMP: stopping secondary CPUs
Kernel Offset: 0x28da86000000 from 0xffff800008000000
PHYS_OFFSET: 0xfffff76600000000
CPU features: 0x00000,01a00100,0000421b
Memory Limit: none |
| In the Linux kernel, the following vulnerability has been resolved:
drivers/perf: hisi: Don't migrate perf to the CPU going to teardown
The driver needs to migrate the perf context if the current using CPU going
to teardown. By the time calling the cpuhp::teardown() callback the
cpu_online_mask() hasn't updated yet and still includes the CPU going to
teardown. In current driver's implementation we may migrate the context
to the teardown CPU and leads to the below calltrace:
...
[ 368.104662][ T932] task:cpuhp/0 state:D stack: 0 pid: 15 ppid: 2 flags:0x00000008
[ 368.113699][ T932] Call trace:
[ 368.116834][ T932] __switch_to+0x7c/0xbc
[ 368.120924][ T932] __schedule+0x338/0x6f0
[ 368.125098][ T932] schedule+0x50/0xe0
[ 368.128926][ T932] schedule_preempt_disabled+0x18/0x24
[ 368.134229][ T932] __mutex_lock.constprop.0+0x1d4/0x5dc
[ 368.139617][ T932] __mutex_lock_slowpath+0x1c/0x30
[ 368.144573][ T932] mutex_lock+0x50/0x60
[ 368.148579][ T932] perf_pmu_migrate_context+0x84/0x2b0
[ 368.153884][ T932] hisi_pcie_pmu_offline_cpu+0x90/0xe0 [hisi_pcie_pmu]
[ 368.160579][ T932] cpuhp_invoke_callback+0x2a0/0x650
[ 368.165707][ T932] cpuhp_thread_fun+0xe4/0x190
[ 368.170316][ T932] smpboot_thread_fn+0x15c/0x1a0
[ 368.175099][ T932] kthread+0x108/0x13c
[ 368.179012][ T932] ret_from_fork+0x10/0x18
...
Use function cpumask_any_but() to find one correct active cpu to fixes
this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
net: cdc_ncm: Deal with too low values of dwNtbOutMaxSize
Currently in cdc_ncm_check_tx_max(), if dwNtbOutMaxSize is lower than
the calculated "min" value, but greater than zero, the logic sets
tx_max to dwNtbOutMaxSize. This is then used to allocate a new SKB in
cdc_ncm_fill_tx_frame() where all the data is handled.
For small values of dwNtbOutMaxSize the memory allocated during
alloc_skb(dwNtbOutMaxSize, GFP_ATOMIC) will have the same size, due to
how size is aligned at alloc time:
size = SKB_DATA_ALIGN(size);
size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
Thus we hit the same bug that we tried to squash with
commit 2be6d4d16a084 ("net: cdc_ncm: Allow for dwNtbOutMaxSize to be unset or zero")
Low values of dwNtbOutMaxSize do not cause an issue presently because at
alloc_skb() time more memory (512b) is allocated than required for the
SKB headers alone (320b), leaving some space (512b - 320b = 192b)
for CDC data (172b).
However, if more elements (for example 3 x u64 = [24b]) were added to
one of the SKB header structs, say 'struct skb_shared_info',
increasing its original size (320b [320b aligned]) to something larger
(344b [384b aligned]), then suddenly the CDC data (172b) no longer
fits in the spare SKB data area (512b - 384b = 128b).
Consequently the SKB bounds checking semantics fails and panics:
skbuff: skb_over_panic: text:ffffffff831f755b len:184 put:172 head:ffff88811f1c6c00 data:ffff88811f1c6c00 tail:0xb8 end:0x80 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:113!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 57 Comm: kworker/0:2 Not tainted 5.15.106-syzkaller-00249-g19c0ed55a470 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/14/2023
Workqueue: mld mld_ifc_work
RIP: 0010:skb_panic net/core/skbuff.c:113 [inline]
RIP: 0010:skb_over_panic+0x14c/0x150 net/core/skbuff.c:118
[snip]
Call Trace:
<TASK>
skb_put+0x151/0x210 net/core/skbuff.c:2047
skb_put_zero include/linux/skbuff.h:2422 [inline]
cdc_ncm_ndp16 drivers/net/usb/cdc_ncm.c:1131 [inline]
cdc_ncm_fill_tx_frame+0x11ab/0x3da0 drivers/net/usb/cdc_ncm.c:1308
cdc_ncm_tx_fixup+0xa3/0x100
Deal with too low values of dwNtbOutMaxSize, clamp it in the range
[USB_CDC_NCM_NTB_MIN_OUT_SIZE, CDC_NCM_NTB_MAX_SIZE_TX]. We ensure
enough data space is allocated to handle CDC data by making sure
dwNtbOutMaxSize is not smaller than USB_CDC_NCM_NTB_MIN_OUT_SIZE. |
| CI4MS is a CodeIgniter 4-based CMS skeleton that delivers a production-ready, modular architecture with RBAC authorization and theme support. Prior to version 0.28.5.0, an authenticated user with file editor permissions can achieve Remote Code Execution (RCE) by leveraging the file creation and save endpoints, an attacker can upload and execute arbitrary PHP code on the server. This issue has been patched in version 0.28.5.0. |
| CI4MS is a CodeIgniter 4-based CMS skeleton that delivers a production-ready, modular architecture with RBAC authorization and theme support. Prior to version 0.28.5.0, the authentication implementation in CI4MS is vulnerable to email enumeration. An unauthenticated attacker can determine whether an email address is registered in the system by analyzing the application's response during the password reset process. This issue has been patched in version 0.28.5.0. |
| Fastify is a fast and low overhead web framework, for Node.js. Prior to version 5.7.3, a denial-of-service vulnerability in Fastify’s Web Streams response handling can allow a remote client to exhaust server memory. Applications that return a ReadableStream (or Response with a Web Stream body) via reply.send() are impacted. A slow or non-reading client can trigger unbounded buffering when backpressure is ignored, leading to process crashes or severe degradation. This issue has been patched in version 5.7.3. |
| Fastify is a fast and low overhead web framework, for Node.js. Prior to version 5.7.2, a validation bypass vulnerability exists in Fastify where request body validation schemas specified by Content-Type can be completely circumvented. By appending a tab character (\t) followed by arbitrary content to the Content-Type header, attackers can bypass body validation while the server still processes the body as the original content type. This issue has been patched in version 5.7.2. |
| Qwik is a performance focused javascript framework. Prior to version 1.12.0, a typo in the regular expression within isContentType causes incorrect parsing of certain Content-Type headers. This issue has been patched in version 1.12.0. |
| Qwik is a performance focused javascript framework. Prior to version 1.19.0, Qwik City’s server-side request handler inconsistently interprets HTTP request headers, which can be abused by a remote attacker to circumvent form submission CSRF protections using specially crafted or multi-valued Content-Type headers. This issue has been patched in version 1.19.0. |
| Qwik is a performance focused javascript framework. Prior to version 1.19.0, a prototype pollution vulnerability exists in the formToObj() function within @builder.io/qwik-city middleware. The function processes form field names with dot notation (e.g., user.name) to create nested objects, but fails to sanitize dangerous property names like __proto__, constructor, and prototype. This allows unauthenticated attackers to pollute Object.prototype by sending crafted HTTP POST requests, potentially leading to privilege escalation, authentication bypass, or denial of service. This issue has been patched in version 1.19.0. |
| Qwik is a performance focused javascript framework. Prior to version 1.19.0, an Open Redirect vulnerability in Qwik City's default request handler middleware allows a remote attacker to redirect users to arbitrary protocol-relative URLs. Successful exploitation permits attackers to craft convincing phishing links that appear to originate from the trusted domain but redirect the victim to an attacker-controlled site. This issue has been patched in version 1.19.0. |
| Qwik is a performance focused javascript framework. Prior to version 1.19.0, a Cross-Site Scripting vulnerability in Qwik.js' server-side rendering virtual attribute serialization allows a remote attacker to inject arbitrary web scripts into server-rendered pages via virtual attributes. Successful exploitation permits script execution in a victim's browser in the context of the affected origin. This issue has been patched in version 1.19.0. |
| Type Confusion in V8 in Google Chrome prior to 144.0.7559.132 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| Heap buffer overflow in libvpx in Google Chrome prior to 144.0.7559.132 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |