Search Results (16789 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71184 1 Linux 1 Linux Kernel 2026-01-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix NULL dereference on root when tracing inode eviction When evicting an inode the first thing we do is to setup tracing for it, which implies fetching the root's id. But in btrfs_evict_inode() the root might be NULL, as implied in the next check that we do in btrfs_evict_inode(). Hence, we either should set the ->root_objectid to 0 in case the root is NULL, or we move tracing setup after checking that the root is not NULL. Setting the rootid to 0 at least gives us the possibility to trace this call even in the case when the root is NULL, so that's the solution taken here.
CVE-2025-71181 1 Linux 1 Linux Kernel 2026-01-31 N/A
In the Linux kernel, the following vulnerability has been resolved: rust_binder: remove spin_lock() in rust_shrink_free_page() When forward-porting Rust Binder to 6.18, I neglected to take commit fb56fdf8b9a2 ("mm/list_lru: split the lock to per-cgroup scope") into account, and apparently I did not end up running the shrinker callback when I sanity tested the driver before submission. This leads to crashes like the following: ============================================ WARNING: possible recursive locking detected 6.18.0-mainline-maybe-dirty #1 Tainted: G IO -------------------------------------------- kswapd0/68 is trying to acquire lock: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: lock_list_lru_of_memcg+0x128/0x230 but task is already holding lock: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: rust_helper_spin_lock+0xd/0x20 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&l->lock); lock(&l->lock); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kswapd0/68: #0: ffffffff90d2e260 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0x597/0x1160 #1: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: rust_helper_spin_lock+0xd/0x20 #2: ffffffff90cf3680 (rcu_read_lock){....}-{1:2}, at: lock_list_lru_of_memcg+0x2d/0x230 To fix this, remove the spin_lock() call from rust_shrink_free_page().
CVE-2025-71180 1 Linux 1 Linux Kernel 2026-01-31 N/A
In the Linux kernel, the following vulnerability has been resolved: counter: interrupt-cnt: Drop IRQF_NO_THREAD flag An IRQ handler can either be IRQF_NO_THREAD or acquire spinlock_t, as CONFIG_PROVE_RAW_LOCK_NESTING warns: ============================= [ BUG: Invalid wait context ] 6.18.0-rc1+git... #1 ----------------------------- some-user-space-process/1251 is trying to lock: (&counter->events_list_lock){....}-{3:3}, at: counter_push_event [counter] other info that might help us debug this: context-{2:2} no locks held by some-user-space-process/.... stack backtrace: CPU: 0 UID: 0 PID: 1251 Comm: some-user-space-process 6.18.0-rc1+git... #1 PREEMPT Call trace: show_stack (C) dump_stack_lvl dump_stack __lock_acquire lock_acquire _raw_spin_lock_irqsave counter_push_event [counter] interrupt_cnt_isr [interrupt_cnt] __handle_irq_event_percpu handle_irq_event handle_simple_irq handle_irq_desc generic_handle_domain_irq gpio_irq_handler handle_irq_desc generic_handle_domain_irq gic_handle_irq call_on_irq_stack do_interrupt_handler el0_interrupt __el0_irq_handler_common el0t_64_irq_handler el0t_64_irq ... and Sebastian correctly points out. Remove IRQF_NO_THREAD as an alternative to switching to raw_spinlock_t, because the latter would limit all potential nested locks to raw_spinlock_t only.
CVE-2024-42130 1 Linux 1 Linux Kernel 2026-01-31 5.6 Medium
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CVE-2025-21746 1 Linux 1 Linux Kernel 2026-01-30 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: Input: synaptics - fix crash when enabling pass-through port When enabling a pass-through port an interrupt might come before psmouse driver binds to the pass-through port. However synaptics sub-driver tries to access psmouse instance presumably associated with the pass-through port to figure out if only 1 byte of response or entire protocol packet needs to be forwarded to the pass-through port and may crash if psmouse instance has not been attached to the port yet. Fix the crash by introducing open() and close() methods for the port and check if the port is open before trying to access psmouse instance. Because psmouse calls serio_open() only after attaching psmouse instance to serio port instance this prevents the potential crash.
CVE-2024-50120 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-30 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: Handle kstrdup failures for passwords In smb3_reconfigure(), after duplicating ctx->password and ctx->password2 with kstrdup(), we need to check for allocation failures. If ses->password allocation fails, return -ENOMEM. If ses->password2 allocation fails, free ses->password, set it to NULL, and return -ENOMEM.
CVE-2026-0901 4 Apple, Google, Linux and 1 more 5 Macos, Android, Chrome and 2 more 2026-01-30 5.4 Medium
Inappropriate implementation in Blink in Google Chrome on Android prior to 144.0.7559.59 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: High)
CVE-2026-23011 1 Linux 1 Linux Kernel 2026-01-30 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv4: ip_gre: make ipgre_header() robust Analog to commit db5b4e39c4e6 ("ip6_gre: make ip6gre_header() robust") Over the years, syzbot found many ways to crash the kernel in ipgre_header() [1]. This involves team or bonding drivers ability to dynamically change their dev->needed_headroom and/or dev->hard_header_len In this particular crash mld_newpack() allocated an skb with a too small reserve/headroom, and by the time mld_sendpack() was called, syzbot managed to attach an ipgre device. [1] skbuff: skb_under_panic: text:ffffffff89ea3cb7 len:2030915468 put:2030915372 head:ffff888058b43000 data:ffff887fdfa6e194 tail:0x120 end:0x6c0 dev:team0 kernel BUG at net/core/skbuff.c:213 ! Oops: invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 1 UID: 0 PID: 1322 Comm: kworker/1:9 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Workqueue: mld mld_ifc_work RIP: 0010:skb_panic+0x157/0x160 net/core/skbuff.c:213 Call Trace: <TASK> skb_under_panic net/core/skbuff.c:223 [inline] skb_push+0xc3/0xe0 net/core/skbuff.c:2641 ipgre_header+0x67/0x290 net/ipv4/ip_gre.c:897 dev_hard_header include/linux/netdevice.h:3436 [inline] neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618 NF_HOOK_COND include/linux/netfilter.h:307 [inline] ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247 NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318 mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855 mld_send_cr net/ipv6/mcast.c:2154 [inline] mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
CVE-2026-23010 1 Linux 1 Linux Kernel 2026-01-30 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix use-after-free in inet6_addr_del(). syzbot reported use-after-free of inet6_ifaddr in inet6_addr_del(). [0] The cited commit accidentally moved ipv6_del_addr() for mngtmpaddr before reading its ifp->flags for temporary addresses in inet6_addr_del(). Let's move ipv6_del_addr() down to fix the UAF. [0]: BUG: KASAN: slab-use-after-free in inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 Read of size 4 at addr ffff88807b89c86c by task syz.3.1618/9593 CPU: 0 UID: 0 PID: 9593 Comm: syz.3.1618 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 addrconf_del_ifaddr+0x11e/0x190 net/ipv6/addrconf.c:3181 inet6_ioctl+0x1e5/0x2b0 net/ipv6/af_inet6.c:582 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f164cf8f749 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f164de64038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f164d1e5fa0 RCX: 00007f164cf8f749 RDX: 0000200000000000 RSI: 0000000000008936 RDI: 0000000000000003 RBP: 00007f164d013f91 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007f164d1e6038 R14: 00007f164d1e5fa0 R15: 00007ffde15c8288 </TASK> Allocated by task 9593: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:397 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:414 kmalloc_noprof include/linux/slab.h:957 [inline] kzalloc_noprof include/linux/slab.h:1094 [inline] ipv6_add_addr+0x4e3/0x2010 net/ipv6/addrconf.c:1120 inet6_addr_add+0x256/0x9b0 net/ipv6/addrconf.c:3050 addrconf_add_ifaddr+0x1fc/0x450 net/ipv6/addrconf.c:3160 inet6_ioctl+0x103/0x2b0 net/ipv6/af_inet6.c:580 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6099: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:584 poison_slab_object mm/kasan/common.c:252 [inline] __kasan_slab_free+0x5f/0x80 mm/kasan/common.c:284 kasan_slab_free include/linux/kasan.h:234 [inline] slab_free_hook mm/slub.c:2540 [inline] slab_free_freelist_hook mm/slub.c:2569 [inline] slab_free_bulk mm/slub.c:6696 [inline] kmem_cache_free_bulk mm/slub.c:7383 [inline] kmem_cache_free_bulk+0x2bf/0x680 mm/slub.c:7362 kfree_bulk include/linux/slab.h:830 [inline] kvfree_rcu_bulk+0x1b7/0x1e0 mm/slab_common.c:1523 kvfree_rcu_drain_ready mm/slab_common.c:1728 [inline] kfree_rcu_monitor+0x1d0/0x2f0 mm/slab_common.c:1801 process_one_work+0x9ba/0x1b20 kernel/workqueue.c:3257 process_scheduled_works kernel/workqu ---truncated---
CVE-2026-23006 1 Linux 1 Linux Kernel 2026-01-30 N/A
In the Linux kernel, the following vulnerability has been resolved: ASoC: tlv320adcx140: fix null pointer The "snd_soc_component" in "adcx140_priv" was only used once but never set. It was only used for reaching "dev" which is already present in "adcx140_priv".
CVE-2026-23005 1 Linux 1 Linux Kernel 2026-01-30 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Clear XSTATE_BV[i] in guest XSAVE state whenever XFD[i]=1 When loading guest XSAVE state via KVM_SET_XSAVE, and when updating XFD in response to a guest WRMSR, clear XFD-disabled features in the saved (or to be restored) XSTATE_BV to ensure KVM doesn't attempt to load state for features that are disabled via the guest's XFD. Because the kernel executes XRSTOR with the guest's XFD, saving XSTATE_BV[i]=1 with XFD[i]=1 will cause XRSTOR to #NM and panic the kernel. E.g. if fpu_update_guest_xfd() sets XFD without clearing XSTATE_BV: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#29: amx_test/848 Modules linked in: kvm_intel kvm irqbypass CPU: 29 UID: 1000 PID: 848 Comm: amx_test Not tainted 6.19.0-rc2-ffa07f7fd437-x86_amx_nm_xfd_non_init-vm #171 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 switch_fpu_return+0x4a/0xb0 kvm_arch_vcpu_ioctl_run+0x1245/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- This can happen if the guest executes WRMSR(MSR_IA32_XFD) to set XFD[18] = 1, and a host IRQ triggers kernel_fpu_begin() prior to the vmexit handler's call to fpu_update_guest_xfd(). and if userspace stuffs XSTATE_BV[i]=1 via KVM_SET_XSAVE: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#14: amx_test/867 Modules linked in: kvm_intel kvm irqbypass CPU: 14 UID: 1000 PID: 867 Comm: amx_test Not tainted 6.19.0-rc2-2dace9faccd6-x86_amx_nm_xfd_non_init-vm #168 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 fpu_swap_kvm_fpstate+0x6b/0x120 kvm_load_guest_fpu+0x30/0x80 [kvm] kvm_arch_vcpu_ioctl_run+0x85/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- The new behavior is consistent with the AMX architecture. Per Intel's SDM, XSAVE saves XSTATE_BV as '0' for components that are disabled via XFD (and non-compacted XSAVE saves the initial configuration of the state component): If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i, the instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1; instead, it operates as if XINUSE[i] = 0 (and the state component was in its initial state): it saves bit i of XSTATE_BV field of the XSAVE header as 0; in addition, XSAVE saves the initial configuration of the state component (the other instructions do not save state component i). Alternatively, KVM could always do XRSTOR with XFD=0, e.g. by using a constant XFD based on the set of enabled features when XSAVEing for a struct fpu_guest. However, having XSTATE_BV[i]=1 for XFD-disabled features can only happen in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, because fpu_swap_kvm_fpstate()'s call to save_fpregs_to_fpstate() saves the outgoing FPU state with the current XFD; and that is (on all but the first WRMSR to XFD) the guest XFD. Therefore, XFD can only go out of sync with XSTATE_BV in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, and it we can consider it (de facto) part of KVM ABI that KVM_GET_XSAVE returns XSTATE_BV[i]=0 for XFD-disabled features. [Move clea ---truncated---
CVE-2026-23003 1 Linux 1 Linux Kernel 2026-01-30 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ip6_tunnel: use skb_vlan_inet_prepare() in __ip6_tnl_rcv() Blamed commit did not take care of VLAN encapsulations as spotted by syzbot [1]. Use skb_vlan_inet_prepare() instead of pskb_inet_may_pull(). [1] BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321 __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321 ip6ip6_dscp_ecn_decapsulate+0x16f/0x1b0 net/ipv6/ip6_tunnel.c:729 __ip6_tnl_rcv+0xed9/0x1b50 net/ipv6/ip6_tunnel.c:860 ip6_tnl_rcv+0xc3/0x100 net/ipv6/ip6_tunnel.c:903 gre_rcv+0x1529/0x1b90 net/ipv6/ip6_gre.c:-1 ip6_protocol_deliver_rcu+0x1c89/0x2c60 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1f4/0x4a0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x9c/0x330 net/ipv6/ip6_input.c:500 ip6_mc_input+0x7ca/0xc10 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x958/0x990 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:318 [inline] ipv6_rcv+0xf1/0x3c0 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core net/core/dev.c:6139 [inline] __netif_receive_skb+0x1df/0xac0 net/core/dev.c:6252 netif_receive_skb_internal net/core/dev.c:6338 [inline] netif_receive_skb+0x57/0x630 net/core/dev.c:6397 tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485 tun_get_user+0x5c0e/0x6c60 drivers/net/tun.c:1953 tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0xbe2/0x15d0 fs/read_write.c:686 ksys_write fs/read_write.c:738 [inline] __do_sys_write fs/read_write.c:749 [inline] __se_sys_write fs/read_write.c:746 [inline] __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746 x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4960 [inline] slab_alloc_node mm/slub.c:5263 [inline] kmem_cache_alloc_node_noprof+0x9e7/0x17a0 mm/slub.c:5315 kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:586 __alloc_skb+0x805/0x1040 net/core/skbuff.c:690 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0xc5/0xa60 net/core/skbuff.c:6712 sock_alloc_send_pskb+0xacc/0xc60 net/core/sock.c:2995 tun_alloc_skb drivers/net/tun.c:1461 [inline] tun_get_user+0x1142/0x6c60 drivers/net/tun.c:1794 tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0xbe2/0x15d0 fs/read_write.c:686 ksys_write fs/read_write.c:738 [inline] __do_sys_write fs/read_write.c:749 [inline] __se_sys_write fs/read_write.c:746 [inline] __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746 x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 0 UID: 0 PID: 6465 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(none) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
CVE-2026-23001 1 Linux 1 Linux Kernel 2026-01-30 7.0 High
In the Linux kernel, the following vulnerability has been resolved: macvlan: fix possible UAF in macvlan_forward_source() Add RCU protection on (struct macvlan_source_entry)->vlan. Whenever macvlan_hash_del_source() is called, we must clear entry->vlan pointer before RCU grace period starts. This allows macvlan_forward_source() to skip over entries queued for freeing. Note that macvlan_dev are already RCU protected, as they are embedded in a standard netdev (netdev_priv(ndev)). https: //lore.kernel.org/netdev/695fb1e8.050a0220.1c677c.039f.GAE@google.com/T/#u
CVE-2026-22999 1 Linux 1 Linux Kernel 2026-01-30 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: do not free existing class in qfq_change_class() Fixes qfq_change_class() error case. cl->qdisc and cl should only be freed if a new class and qdisc were allocated, or we risk various UAF.
CVE-2026-22998 1 Linux 1 Linux Kernel 2026-01-30 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nvme-tcp: fix NULL pointer dereferences in nvmet_tcp_build_pdu_iovec Commit efa56305908b ("nvmet-tcp: Fix a kernel panic when host sends an invalid H2C PDU length") added ttag bounds checking and data_offset validation in nvmet_tcp_handle_h2c_data_pdu(), but it did not validate whether the command's data structures (cmd->req.sg and cmd->iov) have been properly initialized before processing H2C_DATA PDUs. The nvmet_tcp_build_pdu_iovec() function dereferences these pointers without NULL checks. This can be triggered by sending H2C_DATA PDU immediately after the ICREQ/ICRESP handshake, before sending a CONNECT command or NVMe write command. Attack vectors that trigger NULL pointer dereferences: 1. H2C_DATA PDU sent before CONNECT → both pointers NULL 2. H2C_DATA PDU for READ command → cmd->req.sg allocated, cmd->iov NULL 3. H2C_DATA PDU for uninitialized command slot → both pointers NULL The fix validates both cmd->req.sg and cmd->iov before calling nvmet_tcp_build_pdu_iovec(). Both checks are required because: - Uninitialized commands: both NULL - READ commands: cmd->req.sg allocated, cmd->iov NULL - WRITE commands: both allocated
CVE-2026-22997 1 Linux 1 Linux Kernel 2026-01-30 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: can: j1939: j1939_xtp_rx_rts_session_active(): deactivate session upon receiving the second rts Since j1939_session_deactivate_activate_next() in j1939_tp_rxtimer() is called only when the timer is enabled, we need to call j1939_session_deactivate_activate_next() if we cancelled the timer. Otherwise, refcount for j1939_session leaks, which will later appear as | unregister_netdevice: waiting for vcan0 to become free. Usage count = 2. problem.
CVE-2025-71163 1 Linux 1 Linux Kernel 2026-01-30 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: fix device leaks on compat bind and unbind Make sure to drop the reference taken when looking up the idxd device as part of the compat bind and unbind sysfs interface.
CVE-2025-71162 1 Linux 1 Linux Kernel 2026-01-30 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: tegra-adma: Fix use-after-free A use-after-free bug exists in the Tegra ADMA driver when audio streams are terminated, particularly during XRUN conditions. The issue occurs when the DMA buffer is freed by tegra_adma_terminate_all() before the vchan completion tasklet finishes accessing it. The race condition follows this sequence: 1. DMA transfer completes, triggering an interrupt that schedules the completion tasklet (tasklet has not executed yet) 2. Audio playback stops, calling tegra_adma_terminate_all() which frees the DMA buffer memory via kfree() 3. The scheduled tasklet finally executes, calling vchan_complete() which attempts to access the already-freed memory Since tasklets can execute at any time after being scheduled, there is no guarantee that the buffer will remain valid when vchan_complete() runs. Fix this by properly synchronizing the virtual channel completion: - Calling vchan_terminate_vdesc() in tegra_adma_stop() to mark the descriptors as terminated instead of freeing the descriptor. - Add the callback tegra_adma_synchronize() that calls vchan_synchronize() which kills any pending tasklets and frees any terminated descriptors. Crash logs: [ 337.427523] BUG: KASAN: use-after-free in vchan_complete+0x124/0x3b0 [ 337.427544] Read of size 8 at addr ffff000132055428 by task swapper/0/0 [ 337.427562] Call trace: [ 337.427564] dump_backtrace+0x0/0x320 [ 337.427571] show_stack+0x20/0x30 [ 337.427575] dump_stack_lvl+0x68/0x84 [ 337.427584] print_address_description.constprop.0+0x74/0x2b8 [ 337.427590] kasan_report+0x1f4/0x210 [ 337.427598] __asan_load8+0xa0/0xd0 [ 337.427603] vchan_complete+0x124/0x3b0 [ 337.427609] tasklet_action_common.constprop.0+0x190/0x1d0 [ 337.427617] tasklet_action+0x30/0x40 [ 337.427623] __do_softirq+0x1a0/0x5c4 [ 337.427628] irq_exit+0x110/0x140 [ 337.427633] handle_domain_irq+0xa4/0xe0 [ 337.427640] gic_handle_irq+0x64/0x160 [ 337.427644] call_on_irq_stack+0x20/0x4c [ 337.427649] do_interrupt_handler+0x7c/0x90 [ 337.427654] el1_interrupt+0x30/0x80 [ 337.427659] el1h_64_irq_handler+0x18/0x30 [ 337.427663] el1h_64_irq+0x7c/0x80 [ 337.427667] cpuidle_enter_state+0xe4/0x540 [ 337.427674] cpuidle_enter+0x54/0x80 [ 337.427679] do_idle+0x2e0/0x380 [ 337.427685] cpu_startup_entry+0x2c/0x70 [ 337.427690] rest_init+0x114/0x130 [ 337.427695] arch_call_rest_init+0x18/0x24 [ 337.427702] start_kernel+0x380/0x3b4 [ 337.427706] __primary_switched+0xc0/0xc8
CVE-2025-68749 1 Linux 1 Linux Kernel 2026-01-30 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: accel/ivpu: Fix race condition when unbinding BOs Fix 'Memory manager not clean during takedown' warning that occurs when ivpu_gem_bo_free() removes the BO from the BOs list before it gets unmapped. Then file_priv_unbind() triggers a warning in drm_mm_takedown() during context teardown. Protect the unmapping sequence with bo_list_lock to ensure the BO is always fully unmapped when removed from the list. This ensures the BO is either fully unmapped at context teardown time or present on the list and unmapped by file_priv_unbind().
CVE-2025-68725 1 Linux 1 Linux Kernel 2026-01-30 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Do not let BPF test infra emit invalid GSO types to stack Yinhao et al. reported that their fuzzer tool was able to trigger a skb_warn_bad_offload() from netif_skb_features() -> gso_features_check(). When a BPF program - triggered via BPF test infra - pushes the packet to the loopback device via bpf_clone_redirect() then mentioned offload warning can be seen. GSO-related features are then rightfully disabled. We get into this situation due to convert___skb_to_skb() setting gso_segs and gso_size but not gso_type. Technically, it makes sense that this warning triggers since the GSO properties are malformed due to the gso_type. Potentially, the gso_type could be marked non-trustworthy through setting it at least to SKB_GSO_DODGY without any other specific assumptions, but that also feels wrong given we should not go further into the GSO engine in the first place. The checks were added in 121d57af308d ("gso: validate gso_type in GSO handlers") because there were malicious (syzbot) senders that combine a protocol with a non-matching gso_type. If we would want to drop such packets, gso_features_check() currently only returns feature flags via netif_skb_features(), so one location for potentially dropping such skbs could be validate_xmit_unreadable_skb(), but then otoh it would be an additional check in the fast-path for a very corner case. Given bpf_clone_redirect() is the only place where BPF test infra could emit such packets, lets reject them right there.