| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: revert use of devm_kzalloc in btusb
This reverts commit 98921dbd00c4e ("Bluetooth: Use devm_kzalloc in
btusb.c file").
In btusb_probe(), we use devm_kzalloc() to allocate the btusb data. This
ties the lifetime of all the btusb data to the binding of a driver to
one interface, INTF. In a driver that binds to other interfaces, ISOC
and DIAG, this is an accident waiting to happen.
The issue is revealed in btusb_disconnect(), where calling
usb_driver_release_interface(&btusb_driver, data->intf) will have devm
free the data that is also being used by the other interfaces of the
driver that may not be released yet.
To fix this, revert the use of devm and go back to freeing memory
explicitly. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: stm32: sai: fix OF node leak on probe
The reference taken to the sync provider OF node when probing the
platform device is currently only dropped if the set_sync() callback
fails during DAI probe.
Make sure to drop the reference on platform probe failures (e.g. probe
deferral) and on driver unbind.
This also avoids a potential use-after-free in case the DAI is ever
reprobed without first rebinding the platform driver. |
| In the Linux kernel, the following vulnerability has been resolved:
net: nfc: fix deadlock between nfc_unregister_device and rfkill_fop_write
A deadlock can occur between nfc_unregister_device() and rfkill_fop_write()
due to lock ordering inversion between device_lock and rfkill_global_mutex.
The problematic lock order is:
Thread A (rfkill_fop_write):
rfkill_fop_write()
mutex_lock(&rfkill_global_mutex)
rfkill_set_block()
nfc_rfkill_set_block()
nfc_dev_down()
device_lock(&dev->dev) <- waits for device_lock
Thread B (nfc_unregister_device):
nfc_unregister_device()
device_lock(&dev->dev)
rfkill_unregister()
mutex_lock(&rfkill_global_mutex) <- waits for rfkill_global_mutex
This creates a classic ABBA deadlock scenario.
Fix this by moving rfkill_unregister() and rfkill_destroy() outside the
device_lock critical section. Store the rfkill pointer in a local variable
before releasing the lock, then call rfkill_unregister() after releasing
device_lock.
This change is safe because rfkill_fop_write() holds rfkill_global_mutex
while calling the rfkill callbacks, and rfkill_unregister() also acquires
rfkill_global_mutex before cleanup. Therefore, rfkill_unregister() will
wait for any ongoing callback to complete before proceeding, and
device_del() is only called after rfkill_unregister() returns, preventing
any use-after-free.
The similar lock ordering in nfc_register_device() (device_lock ->
rfkill_global_mutex via rfkill_register) is safe because during
registration the device is not yet in rfkill_list, so no concurrent
rfkill operations can occur on this device. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s/slb: Fix SLB multihit issue during SLB preload
On systems using the hash MMU, there is a software SLB preload cache that
mirrors the entries loaded into the hardware SLB buffer. This preload
cache is subject to periodic eviction — typically after every 256 context
switches — to remove old entry.
To optimize performance, the kernel skips switch_mmu_context() in
switch_mm_irqs_off() when the prev and next mm_struct are the same.
However, on hash MMU systems, this can lead to inconsistencies between
the hardware SLB and the software preload cache.
If an SLB entry for a process is evicted from the software cache on one
CPU, and the same process later runs on another CPU without executing
switch_mmu_context(), the hardware SLB may retain stale entries. If the
kernel then attempts to reload that entry, it can trigger an SLB
multi-hit error.
The following timeline shows how stale SLB entries are created and can
cause a multi-hit error when a process moves between CPUs without a
MMU context switch.
CPU 0 CPU 1
----- -----
Process P
exec swapper/1
load_elf_binary
begin_new_exc
activate_mm
switch_mm_irqs_off
switch_mmu_context
switch_slb
/*
* This invalidates all
* the entries in the HW
* and setup the new HW
* SLB entries as per the
* preload cache.
*/
context_switch
sched_migrate_task migrates process P to cpu-1
Process swapper/0 context switch (to process P)
(uses mm_struct of Process P) switch_mm_irqs_off()
switch_slb
load_slb++
/*
* load_slb becomes 0 here
* and we evict an entry from
* the preload cache with
* preload_age(). We still
* keep HW SLB and preload
* cache in sync, that is
* because all HW SLB entries
* anyways gets evicted in
* switch_slb during SLBIA.
* We then only add those
* entries back in HW SLB,
* which are currently
* present in preload_cache
* (after eviction).
*/
load_elf_binary continues...
setup_new_exec()
slb_setup_new_exec()
sched_switch event
sched_migrate_task migrates
process P to cpu-0
context_switch from swapper/0 to Process P
switch_mm_irqs_off()
/*
* Since both prev and next mm struct are same we don't call
* switch_mmu_context(). This will cause the HW SLB and SW preload
* cache to go out of sync in preload_new_slb_context. Because there
* was an SLB entry which was evicted from both HW and preload cache
* on cpu-1. Now later in preload_new_slb_context(), when we will try
* to add the same preload entry again, we will add this to the SW
* preload cache and then will add it to the HW SLB. Since on cpu-0
* this entry was never invalidated, hence adding this entry to the HW
* SLB will cause a SLB multi-hit error.
*/
load_elf_binary cont
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: Cap the number of PCR banks
tpm2_get_pcr_allocation() does not cap any upper limit for the number of
banks. Cap the limit to eight banks so that out of bounds values coming
from external I/O cause on only limited harm. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: aic94xx: fix use-after-free in device removal path
The asd_pci_remove() function fails to synchronize with pending tasklets
before freeing the asd_ha structure, leading to a potential
use-after-free vulnerability.
When a device removal is triggered (via hot-unplug or module unload),
race condition can occur.
The fix adds tasklet_kill() before freeing the asd_ha structure,
ensuring all scheduled tasklets complete before cleanup proceeds. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: invalidate dentry cache on failed whiteout creation
F2FS can mount filesystems with corrupted directory depth values that
get runtime-clamped to MAX_DIR_HASH_DEPTH. When RENAME_WHITEOUT
operations are performed on such directories, f2fs_rename performs
directory modifications (updating target entry and deleting source
entry) before attempting to add the whiteout entry via f2fs_add_link.
If f2fs_add_link fails due to the corrupted directory structure, the
function returns an error to VFS, but the partial directory
modifications have already been committed to disk. VFS assumes the
entire rename operation failed and does not update the dentry cache,
leaving stale mappings.
In the error path, VFS does not call d_move() to update the dentry
cache. This results in new_dentry still pointing to the old inode
(new_inode) which has already had its i_nlink decremented to zero.
The stale cache causes subsequent operations to incorrectly reference
the freed inode.
This causes subsequent operations to use cached dentry information that
no longer matches the on-disk state. When a second rename targets the
same entry, VFS attempts to decrement i_nlink on the stale inode, which
may already have i_nlink=0, triggering a WARNING in drop_nlink().
Example sequence:
1. First rename (RENAME_WHITEOUT): file2 → file1
- f2fs updates file1 entry on disk (points to inode 8)
- f2fs deletes file2 entry on disk
- f2fs_add_link(whiteout) fails (corrupted directory)
- Returns error to VFS
- VFS does not call d_move() due to error
- VFS cache still has: file1 → inode 7 (stale!)
- inode 7 has i_nlink=0 (already decremented)
2. Second rename: file3 → file1
- VFS uses stale cache: file1 → inode 7
- Tries to drop_nlink on inode 7 (i_nlink already 0)
- WARNING in drop_nlink()
Fix this by explicitly invalidating old_dentry and new_dentry when
f2fs_add_link fails during whiteout creation. This forces VFS to
refresh from disk on subsequent operations, ensuring cache consistency
even when the rename partially succeeds.
Reproducer:
1. Mount F2FS image with corrupted i_current_depth
2. renameat2(file2, file1, RENAME_WHITEOUT)
3. renameat2(file3, file1, 0)
4. System triggers WARNING in drop_nlink() |
| In the Linux kernel, the following vulnerability has been resolved:
svcrdma: bound check rq_pages index in inline path
svc_rdma_copy_inline_range indexed rqstp->rq_pages[rc_curpage] without
verifying rc_curpage stays within the allocated page array. Add guards
before the first use and after advancing to a new page. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: ets: Always remove class from active list before deleting in ets_qdisc_change
zdi-disclosures@trendmicro.com says:
The vulnerability is a race condition between `ets_qdisc_dequeue` and
`ets_qdisc_change`. It leads to UAF on `struct Qdisc` object.
Attacker requires the capability to create new user and network namespace
in order to trigger the bug.
See my additional commentary at the end of the analysis.
Analysis:
static int ets_qdisc_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
...
// (1) this lock is preventing .change handler (`ets_qdisc_change`)
//to race with .dequeue handler (`ets_qdisc_dequeue`)
sch_tree_lock(sch);
for (i = nbands; i < oldbands; i++) {
if (i >= q->nstrict && q->classes[i].qdisc->q.qlen)
list_del_init(&q->classes[i].alist);
qdisc_purge_queue(q->classes[i].qdisc);
}
WRITE_ONCE(q->nbands, nbands);
for (i = nstrict; i < q->nstrict; i++) {
if (q->classes[i].qdisc->q.qlen) {
// (2) the class is added to the q->active
list_add_tail(&q->classes[i].alist, &q->active);
q->classes[i].deficit = quanta[i];
}
}
WRITE_ONCE(q->nstrict, nstrict);
memcpy(q->prio2band, priomap, sizeof(priomap));
for (i = 0; i < q->nbands; i++)
WRITE_ONCE(q->classes[i].quantum, quanta[i]);
for (i = oldbands; i < q->nbands; i++) {
q->classes[i].qdisc = queues[i];
if (q->classes[i].qdisc != &noop_qdisc)
qdisc_hash_add(q->classes[i].qdisc, true);
}
// (3) the qdisc is unlocked, now dequeue can be called in parallel
// to the rest of .change handler
sch_tree_unlock(sch);
ets_offload_change(sch);
for (i = q->nbands; i < oldbands; i++) {
// (4) we're reducing the refcount for our class's qdisc and
// freeing it
qdisc_put(q->classes[i].qdisc);
// (5) If we call .dequeue between (4) and (5), we will have
// a strong UAF and we can control RIP
q->classes[i].qdisc = NULL;
WRITE_ONCE(q->classes[i].quantum, 0);
q->classes[i].deficit = 0;
gnet_stats_basic_sync_init(&q->classes[i].bstats);
memset(&q->classes[i].qstats, 0, sizeof(q->classes[i].qstats));
}
return 0;
}
Comment:
This happens because some of the classes have their qdiscs assigned to
NULL, but remain in the active list. This commit fixes this issue by always
removing the class from the active list before deleting and freeing its
associated qdisc
Reproducer Steps
(trimmed version of what was sent by zdi-disclosures@trendmicro.com)
```
DEV="${DEV:-lo}"
ROOT_HANDLE="${ROOT_HANDLE:-1:}"
BAND2_HANDLE="${BAND2_HANDLE:-20:}" # child under 1:2
PING_BYTES="${PING_BYTES:-48}"
PING_COUNT="${PING_COUNT:-200000}"
PING_DST="${PING_DST:-127.0.0.1}"
SLOW_TBF_RATE="${SLOW_TBF_RATE:-8bit}"
SLOW_TBF_BURST="${SLOW_TBF_BURST:-100b}"
SLOW_TBF_LAT="${SLOW_TBF_LAT:-1s}"
cleanup() {
tc qdisc del dev "$DEV" root 2>/dev/null
}
trap cleanup EXIT
ip link set "$DEV" up
tc qdisc del dev "$DEV" root 2>/dev/null || true
tc qdisc add dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2
tc qdisc add dev "$DEV" parent 1:2 handle "$BAND2_HANDLE" \
tbf rate "$SLOW_TBF_RATE" burst "$SLOW_TBF_BURST" latency "$SLOW_TBF_LAT"
tc filter add dev "$DEV" parent 1: protocol all prio 1 u32 match u32 0 0 flowid 1:2
tc -s qdisc ls dev $DEV
ping -I "$DEV" -f -c "$PING_COUNT" -s "$PING_BYTES" -W 0.001 "$PING_DST" \
>/dev/null 2>&1 &
tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 0
tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2
tc -s qdisc ls dev $DEV
tc qdisc del dev "$DEV" parent
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: using the num_tqps in the vf driver to apply for resources
Currently, hdev->htqp is allocated using hdev->num_tqps, and kinfo->tqp
is allocated using kinfo->num_tqps. However, kinfo->num_tqps is set to
min(new_tqps, hdev->num_tqps); Therefore, kinfo->num_tqps may be smaller
than hdev->num_tqps, which causes some hdev->htqp[i] to remain
uninitialized in hclgevf_knic_setup().
Thus, this patch allocates hdev->htqp and kinfo->tqp using hdev->num_tqps,
ensuring that the lengths of hdev->htqp and kinfo->tqp are consistent
and that all elements are properly initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix readahead reclaim deadlock
Commit e26ee4efbc79 ("fuse: allocate ff->release_args only if release is
needed") skips allocating ff->release_args if the server does not
implement open. However in doing so, fuse_prepare_release() now skips
grabbing the reference on the inode, which makes it possible for an
inode to be evicted from the dcache while there are inflight readahead
requests. This causes a deadlock if the server triggers reclaim while
servicing the readahead request and reclaim attempts to evict the inode
of the file being read ahead. Since the folio is locked during
readahead, when reclaim evicts the fuse inode and fuse_evict_inode()
attempts to remove all folios associated with the inode from the page
cache (truncate_inode_pages_range()), reclaim will block forever waiting
for the lock since readahead cannot relinquish the lock because it is
itself blocked in reclaim:
>>> stack_trace(1504735)
folio_wait_bit_common (mm/filemap.c:1308:4)
folio_lock (./include/linux/pagemap.h:1052:3)
truncate_inode_pages_range (mm/truncate.c:336:10)
fuse_evict_inode (fs/fuse/inode.c:161:2)
evict (fs/inode.c:704:3)
dentry_unlink_inode (fs/dcache.c:412:3)
__dentry_kill (fs/dcache.c:615:3)
shrink_kill (fs/dcache.c:1060:12)
shrink_dentry_list (fs/dcache.c:1087:3)
prune_dcache_sb (fs/dcache.c:1168:2)
super_cache_scan (fs/super.c:221:10)
do_shrink_slab (mm/shrinker.c:435:9)
shrink_slab (mm/shrinker.c:626:10)
shrink_node (mm/vmscan.c:5951:2)
shrink_zones (mm/vmscan.c:6195:3)
do_try_to_free_pages (mm/vmscan.c:6257:3)
do_swap_page (mm/memory.c:4136:11)
handle_pte_fault (mm/memory.c:5562:10)
handle_mm_fault (mm/memory.c:5870:9)
do_user_addr_fault (arch/x86/mm/fault.c:1338:10)
handle_page_fault (arch/x86/mm/fault.c:1481:3)
exc_page_fault (arch/x86/mm/fault.c:1539:2)
asm_exc_page_fault+0x22/0x27
Fix this deadlock by allocating ff->release_args and grabbing the
reference on the inode when preparing the file for release even if the
server does not implement open. The inode reference will be dropped when
the last reference on the fuse file is dropped (see fuse_file_put() ->
fuse_release_end()). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: xattr: fix null pointer deref in ext4_raw_inode()
If ext4_get_inode_loc() fails (e.g. if it returns -EFSCORRUPTED),
iloc.bh will remain set to NULL. Since ext4_xattr_inode_dec_ref_all()
lacks error checking, this will lead to a null pointer dereference
in ext4_raw_inode(), called right after ext4_get_inode_loc().
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb: dtv5100: fix out-of-bounds in dtv5100_i2c_msg()
rlen value is a user-controlled value, but dtv5100_i2c_msg() does not
check the size of the rlen value. Therefore, if it is set to a value
larger than sizeof(st->data), an out-of-bounds vuln occurs for st->data.
Therefore, we need to add proper range checking to prevent this vuln. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: Revert "scsi: qla2xxx: Perform lockless command completion in abort path"
This reverts commit 0367076b0817d5c75dfb83001ce7ce5c64d803a9.
The commit being reverted added code to __qla2x00_abort_all_cmds() to
call sp->done() without holding a spinlock. But unlike the older code
below it, this new code failed to check sp->cmd_type and just assumed
TYPE_SRB, which results in a jump to an invalid pointer in target-mode
with TYPE_TGT_CMD:
qla2xxx [0000:65:00.0]-d034:8: qla24xx_do_nack_work create sess success
0000000009f7a79b
qla2xxx [0000:65:00.0]-5003:8: ISP System Error - mbx1=1ff5h mbx2=10h
mbx3=0h mbx4=0h mbx5=191h mbx6=0h mbx7=0h.
qla2xxx [0000:65:00.0]-d01e:8: -> fwdump no buffer
qla2xxx [0000:65:00.0]-f03a:8: qla_target(0): System error async event
0x8002 occurred
qla2xxx [0000:65:00.0]-00af:8: Performing ISP error recovery -
ha=0000000058183fda.
BUG: kernel NULL pointer dereference, address: 0000000000000000
PF: supervisor instruction fetch in kernel mode
PF: error_code(0x0010) - not-present page
PGD 0 P4D 0
Oops: 0010 [#1] SMP
CPU: 2 PID: 9446 Comm: qla2xxx_8_dpc Tainted: G O 6.1.133 #1
Hardware name: Supermicro Super Server/X11SPL-F, BIOS 4.2 12/15/2023
RIP: 0010:0x0
Code: Unable to access opcode bytes at 0xffffffffffffffd6.
RSP: 0018:ffffc90001f93dc8 EFLAGS: 00010206
RAX: 0000000000000282 RBX: 0000000000000355 RCX: ffff88810d16a000
RDX: ffff88810dbadaa8 RSI: 0000000000080000 RDI: ffff888169dc38c0
RBP: ffff888169dc38c0 R08: 0000000000000001 R09: 0000000000000045
R10: ffffffffa034bdf0 R11: 0000000000000000 R12: ffff88810800bb40
R13: 0000000000001aa8 R14: ffff888100136610 R15: ffff8881070f7400
FS: 0000000000000000(0000) GS:ffff88bf80080000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffd6 CR3: 000000010c8ff006 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die+0x4d/0x8b
? page_fault_oops+0x91/0x180
? trace_buffer_unlock_commit_regs+0x38/0x1a0
? exc_page_fault+0x391/0x5e0
? asm_exc_page_fault+0x22/0x30
__qla2x00_abort_all_cmds+0xcb/0x3e0 [qla2xxx_scst]
qla2x00_abort_all_cmds+0x50/0x70 [qla2xxx_scst]
qla2x00_abort_isp_cleanup+0x3b7/0x4b0 [qla2xxx_scst]
qla2x00_abort_isp+0xfd/0x860 [qla2xxx_scst]
qla2x00_do_dpc+0x581/0xa40 [qla2xxx_scst]
kthread+0xa8/0xd0
</TASK>
Then commit 4475afa2646d ("scsi: qla2xxx: Complete command early within
lock") added the spinlock back, because not having the lock caused a
race and a crash. But qla2x00_abort_srb() in the switch below already
checks for qla2x00_chip_is_down() and handles it the same way, so the
code above the switch is now redundant and still buggy in target-mode.
Remove it. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: fw_tracer, Validate format string parameters
Add validation for format string parameters in the firmware tracer to
prevent potential security vulnerabilities and crashes from malformed
format strings received from firmware.
The firmware tracer receives format strings from the device firmware and
uses them to format trace messages. Without proper validation, bad
firmware could provide format strings with invalid format specifiers
(e.g., %s, %p, %n) that could lead to crashes, or other undefined
behavior.
Add mlx5_tracer_validate_params() to validate that all format specifiers
in trace strings are limited to safe integer/hex formats (%x, %d, %i,
%u, %llx, %lx, etc.). Reject strings containing other format types that
could be used to access arbitrary memory or cause crashes.
Invalid format strings are added to the trace output for visibility with
"BAD_FORMAT: " prefix. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: ets: Remove drr class from the active list if it changes to strict
Whenever a user issues an ets qdisc change command, transforming a
drr class into a strict one, the ets code isn't checking whether that
class was in the active list and removing it. This means that, if a
user changes a strict class (which was in the active list) back to a drr
one, that class will be added twice to the active list [1].
Doing so with the following commands:
tc qdisc add dev lo root handle 1: ets bands 2 strict 1
tc qdisc add dev lo parent 1:2 handle 20: \
tbf rate 8bit burst 100b latency 1s
tc filter add dev lo parent 1: basic classid 1:2
ping -c1 -W0.01 -s 56 127.0.0.1
tc qdisc change dev lo root handle 1: ets bands 2 strict 2
tc qdisc change dev lo root handle 1: ets bands 2 strict 1
ping -c1 -W0.01 -s 56 127.0.0.1
Will trigger the following splat with list debug turned on:
[ 59.279014][ T365] ------------[ cut here ]------------
[ 59.279452][ T365] list_add double add: new=ffff88801d60e350, prev=ffff88801d60e350, next=ffff88801d60e2c0.
[ 59.280153][ T365] WARNING: CPU: 3 PID: 365 at lib/list_debug.c:35 __list_add_valid_or_report+0x17f/0x220
[ 59.280860][ T365] Modules linked in:
[ 59.281165][ T365] CPU: 3 UID: 0 PID: 365 Comm: tc Not tainted 6.18.0-rc7-00105-g7e9f13163c13-dirty #239 PREEMPT(voluntary)
[ 59.281977][ T365] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 59.282391][ T365] RIP: 0010:__list_add_valid_or_report+0x17f/0x220
[ 59.282842][ T365] Code: 89 c6 e8 d4 b7 0d ff 90 0f 0b 90 90 31 c0 e9 31 ff ff ff 90 48 c7 c7 e0 a0 22 9f 48 89 f2 48 89 c1 4c 89 c6 e8 b2 b7 0d ff 90 <0f> 0b 90 90 31 c0 e9 0f ff ff ff 48 89 f7 48 89 44 24 10 4c 89 44
...
[ 59.288812][ T365] Call Trace:
[ 59.289056][ T365] <TASK>
[ 59.289224][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.289546][ T365] ets_qdisc_change+0xd2b/0x1e80
[ 59.289891][ T365] ? __lock_acquire+0x7e7/0x1be0
[ 59.290223][ T365] ? __pfx_ets_qdisc_change+0x10/0x10
[ 59.290546][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.290898][ T365] ? __mutex_trylock_common+0xda/0x240
[ 59.291228][ T365] ? __pfx___mutex_trylock_common+0x10/0x10
[ 59.291655][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.291993][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.292313][ T365] ? trace_contention_end+0xc8/0x110
[ 59.292656][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.293022][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.293351][ T365] tc_modify_qdisc+0x63a/0x1cf0
Fix this by always checking and removing an ets class from the active list
when changing it to strict.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/tree/net/sched/sch_ets.c?id=ce052b9402e461a9aded599f5b47e76bc727f7de#n663 |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix filename leak in __io_openat_prep()
__io_openat_prep() allocates a struct filename using getname(). However,
for the condition of the file being installed in the fixed file table as
well as having O_CLOEXEC flag set, the function returns early. At that
point, the request doesn't have REQ_F_NEED_CLEANUP flag set. Due to this,
the memory for the newly allocated struct filename is not cleaned up,
causing a memory leak.
Fix this by setting the REQ_F_NEED_CLEANUP for the request just after the
successful getname() call, so that when the request is torn down, the
filename will be cleaned up, along with other resources needing cleanup. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix ipv4 null-ptr-deref in route error path
The IPv4 code path in __ip_vs_get_out_rt() calls dst_link_failure()
without ensuring skb->dev is set, leading to a NULL pointer dereference
in fib_compute_spec_dst() when ipv4_link_failure() attempts to send
ICMP destination unreachable messages.
The issue emerged after commit ed0de45a1008 ("ipv4: recompile ip options
in ipv4_link_failure") started calling __ip_options_compile() from
ipv4_link_failure(). This code path eventually calls fib_compute_spec_dst()
which dereferences skb->dev. An attempt was made to fix the NULL skb->dev
dereference in commit 0113d9c9d1cc ("ipv4: fix null-deref in
ipv4_link_failure"), but it only addressed the immediate dev_net(skb->dev)
dereference by using a fallback device. The fix was incomplete because
fib_compute_spec_dst() later in the call chain still accesses skb->dev
directly, which remains NULL when IPVS calls dst_link_failure().
The crash occurs when:
1. IPVS processes a packet in NAT mode with a misconfigured destination
2. Route lookup fails in __ip_vs_get_out_rt() before establishing a route
3. The error path calls dst_link_failure(skb) with skb->dev == NULL
4. ipv4_link_failure() → ipv4_send_dest_unreach() →
__ip_options_compile() → fib_compute_spec_dst()
5. fib_compute_spec_dst() dereferences NULL skb->dev
Apply the same fix used for IPv6 in commit 326bf17ea5d4 ("ipvs: fix
ipv6 route unreach panic"): set skb->dev from skb_dst(skb)->dev before
calling dst_link_failure().
KASAN: null-ptr-deref in range [0x0000000000000328-0x000000000000032f]
CPU: 1 PID: 12732 Comm: syz.1.3469 Not tainted 6.6.114 #2
RIP: 0010:__in_dev_get_rcu include/linux/inetdevice.h:233
RIP: 0010:fib_compute_spec_dst+0x17a/0x9f0 net/ipv4/fib_frontend.c:285
Call Trace:
<TASK>
spec_dst_fill net/ipv4/ip_options.c:232
spec_dst_fill net/ipv4/ip_options.c:229
__ip_options_compile+0x13a1/0x17d0 net/ipv4/ip_options.c:330
ipv4_send_dest_unreach net/ipv4/route.c:1252
ipv4_link_failure+0x702/0xb80 net/ipv4/route.c:1265
dst_link_failure include/net/dst.h:437
__ip_vs_get_out_rt+0x15fd/0x19e0 net/netfilter/ipvs/ip_vs_xmit.c:412
ip_vs_nat_xmit+0x1d8/0xc80 net/netfilter/ipvs/ip_vs_xmit.c:764 |
| In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: initialize local pointers upon transfer of memory ownership
vidtv_channel_si_init() creates a temporary list (program, service, event)
and ownership of the memory itself is transferred to the PAT/SDT/EIT
tables through vidtv_psi_pat_program_assign(),
vidtv_psi_sdt_service_assign(), vidtv_psi_eit_event_assign().
The problem here is that the local pointer where the memory ownership
transfer was completed is not initialized to NULL. This causes the
vidtv_psi_pmt_create_sec_for_each_pat_entry() function to fail, and
in the flow that jumps to free_eit, the memory that was freed by
vidtv_psi_*_table_destroy() can be accessed again by
vidtv_psi_*_event_destroy() due to the uninitialized local pointer, so it
is freed once again.
Therefore, to prevent use-after-free and double-free vulnerability,
local pointers must be initialized to NULL when transferring memory
ownership. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_ishtp: Fix UAF after unbinding driver
After unbinding the driver, another kthread `cros_ec_console_log_work`
is still accessing the device, resulting an UAF and crash.
The driver doesn't unregister the EC device in .remove() which should
shutdown sub-devices synchronously. Fix it. |