Search

Search Results (329558 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68947 1 Nsecsoft 1 Nscknl 2026-01-14 4.7 Medium
NSecsoft 'NSecKrnl' is a Windows driver that allows a local, authenticated attacker to terminate processes owned by other users, including SYSTEM and Protected Processes by issuing crafted IOCTL requests to the driver.
CVE-2026-22791 3 Ibm, Linux, Opencryptoki Project 3 Aix, Linux, Opencryptoki 2026-01-14 6.6 Medium
openCryptoki is a PKCS#11 library and tools for Linux and AIX. In 3.25.0 and 3.26.0, there is a heap buffer overflow vulnerability in the CKM_ECDH_AES_KEY_WRAP implementation allows an attacker with local access to cause out-of-bounds writes in the host process by supplying a compressed EC public key and invoking C_WrapKey. This can lead to heap corruption, or denial-of-service.
CVE-2025-8090 1 Blackberry 2 Qnx Os For Safety, Qnx Software Development Platform 2026-01-14 6.2 Medium
Null pointer dereference in the MsgRegisterEvent() system call could allow an attacker with local access and code execution abilities to crash the QNX Neutrino kernel.
CVE-2025-25652 1 Eptura 1 Archibus 2026-01-14 7.5 High
In Eptura Archibus 2024.03.01.109, the "Run script" and "Server File" components of the "Database Update Wizard" are vulnerable to directory traversal.
CVE-2025-10865 1 Imaginationtech 1 Graphics Ddk 2026-01-14 7.8 High
Software installed and run as a non-privileged user may conduct improper GPU system calls to cause mismanagement of reference counting to cause a potential use after free. Improper reference counting on an internal resource caused scenario where potential for use after free was present.
CVE-2026-0407 1 Netgear 4 Ex2800, Ex3110, Ex5000 and 1 more 2026-01-14 N/A
An insufficient authentication vulnerability in NETGEAR WiFi range extenders allows a network adjacent attacker with WiFi authentication or a physical Ethernet port connection to bypass the authentication process and access the admin panel.
CVE-2025-25176 1 Imaginationtech 1 Graphics Ddk 2026-01-14 9.1 Critical
Intermediate register values of secure workloads can be exfiltrated in workloads scheduled from applications running in the non-secure environment of a platform.
CVE-2020-36919 1 Wpforms 1 Wpforms 2026-01-14 6.1 Medium
WPForms 1.7.8 contains a cross-site scripting vulnerability in the slider import search feature and tab parameter. Attackers can inject malicious scripts through the ListTable.php endpoint to execute arbitrary JavaScript in victim's browser.
CVE-2025-46684 1 Dell 1 Supportassist Os Recovery 2026-01-14 6.6 Medium
Dell SupportAssist OS Recovery, versions prior to 5.5.15.1, contain a Creation of Temporary File With Insecure Permissions vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Information Tampering.
CVE-2025-46685 1 Dell 1 Supportassist Os Recovery 2026-01-14 7.5 High
Dell SupportAssist OS Recovery, versions prior to 5.5.15.1, contain a Creation of Temporary File With Insecure Permissions vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Elevation of privileges.
CVE-2025-58409 1 Imaginationtech 1 Graphics Ddk 2026-01-14 3.5 Low
Software installed and run as a non-privileged user may conduct improper GPU system calls to subvert GPU HW to write to arbitrary physical memory pages. Under certain circumstances this exploit could be used to corrupt data pages not allocated by the GPU driver but memory pages in use by the kernel and drivers running on the platform altering their behaviour. This attack can lead the GPU to perform write operations on restricted internal GPU buffers that can lead to a second order affect of corrupted arbitrary physical memory.
CVE-2025-62182 1 Pegasystems 1 Pega Infinity 2026-01-14 N/A
Pega Customer Service Framework versions 8.7.0 through 25.1.0 are affected by a Unrestricted file upload vulnerability, where a privileged user could potentially upload a malicious file.
CVE-2025-65784 1 Hubert 1 Hub 2026-01-14 6.5 Medium
Insecure permissions in Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows authenticated attackers with low-level privileges to access other users' information via a crafted API request.
CVE-2026-0408 1 Netgear 4 Ex2800, Ex3110, Ex5000 and 1 more 2026-01-14 N/A
A path traversal vulnerability in NETGEAR WiFi range extenders allows an attacker with LAN authentication to access the router's IP and review the contents of the dynamically generated webproc file, which records the username and password submitted to the router GUI.
CVE-2025-47855 1 Fortinet 2 Fortifone, Fortinet 2026-01-14 9.3 Critical
An exposure of sensitive information to an unauthorized actor [CWE-200] vulnerability in Fortinet FortiFone 7.0.0 through 7.0.1, FortiFone 3.0.13 through 3.0.23 allows an unauthenticated attacker to obtain the device configuration via crafted HTTP or HTTPS requests.
CVE-2025-71142 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpuset: fix warning when disabling remote partition A warning was triggered as follows: WARNING: kernel/cgroup/cpuset.c:1651 at remote_partition_disable+0xf7/0x110 RIP: 0010:remote_partition_disable+0xf7/0x110 RSP: 0018:ffffc90001947d88 EFLAGS: 00000206 RAX: 0000000000007fff RBX: ffff888103b6e000 RCX: 0000000000006f40 RDX: 0000000000006f00 RSI: ffffc90001947da8 RDI: ffff888103b6e000 RBP: ffff888103b6e000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: ffff88810b2e2728 R12: ffffc90001947da8 R13: 0000000000000000 R14: ffffc90001947da8 R15: ffff8881081f1c00 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f55c8bbe0b2 CR3: 000000010b14c000 CR4: 00000000000006f0 Call Trace: <TASK> update_prstate+0x2d3/0x580 cpuset_partition_write+0x94/0xf0 kernfs_fop_write_iter+0x147/0x200 vfs_write+0x35d/0x500 ksys_write+0x66/0xe0 do_syscall_64+0x6b/0x390 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f55c8cd4887 Reproduction steps (on a 16-CPU machine): # cd /sys/fs/cgroup/ # mkdir A1 # echo +cpuset > A1/cgroup.subtree_control # echo "0-14" > A1/cpuset.cpus.exclusive # mkdir A1/A2 # echo "0-14" > A1/A2/cpuset.cpus.exclusive # echo "root" > A1/A2/cpuset.cpus.partition # echo 0 > /sys/devices/system/cpu/cpu15/online # echo member > A1/A2/cpuset.cpus.partition When CPU 15 is offlined, subpartitions_cpus gets cleared because no CPUs remain available for the top_cpuset, forcing partitions to share CPUs with the top_cpuset. In this scenario, disabling the remote partition triggers a warning stating that effective_xcpus is not a subset of subpartitions_cpus. Partitions should be invalidated in this case to inform users that the partition is now invalid(cpus are shared with top_cpuset). To fix this issue: 1. Only emit the warning only if subpartitions_cpus is not empty and the effective_xcpus is not a subset of subpartitions_cpus. 2. During the CPU hotplug process, invalidate partitions if subpartitions_cpus is empty.
CVE-2025-71139 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: kernel/kexec: fix IMA when allocation happens in CMA area *** Bug description *** When I tested kexec with the latest kernel, I ran into the following warning: [ 40.712410] ------------[ cut here ]------------ [ 40.712576] WARNING: CPU: 2 PID: 1562 at kernel/kexec_core.c:1001 kimage_map_segment+0x144/0x198 [...] [ 40.816047] Call trace: [ 40.818498] kimage_map_segment+0x144/0x198 (P) [ 40.823221] ima_kexec_post_load+0x58/0xc0 [ 40.827246] __do_sys_kexec_file_load+0x29c/0x368 [...] [ 40.855423] ---[ end trace 0000000000000000 ]--- *** How to reproduce *** This bug is only triggered when the kexec target address is allocated in the CMA area. If no CMA area is reserved in the kernel, use the "cma=" option in the kernel command line to reserve one. *** Root cause *** The commit 07d24902977e ("kexec: enable CMA based contiguous allocation") allocates the kexec target address directly on the CMA area to avoid copying during the jump. In this case, there is no IND_SOURCE for the kexec segment. But the current implementation of kimage_map_segment() assumes that IND_SOURCE pages exist and map them into a contiguous virtual address by vmap(). *** Solution *** If IMA segment is allocated in the CMA area, use its page_address() directly.
CVE-2025-71130 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gem: Zero-initialize the eb.vma array in i915_gem_do_execbuffer Initialize the eb.vma array with values of 0 when the eb structure is first set up. In particular, this sets the eb->vma[i].vma pointers to NULL, simplifying cleanup and getting rid of the bug described below. During the execution of eb_lookup_vmas(), the eb->vma array is successively filled up with struct eb_vma objects. This process includes calling eb_add_vma(), which might fail; however, even in the event of failure, eb->vma[i].vma is set for the currently processed buffer. If eb_add_vma() fails, eb_lookup_vmas() returns with an error, which prompts a call to eb_release_vmas() to clean up the mess. Since eb_lookup_vmas() might fail during processing any (possibly not first) buffer, eb_release_vmas() checks whether a buffer's vma is NULL to know at what point did the lookup function fail. In eb_lookup_vmas(), eb->vma[i].vma is set to NULL if either the helper function eb_lookup_vma() or eb_validate_vma() fails. eb->vma[i+1].vma is set to NULL in case i915_gem_object_userptr_submit_init() fails; the current one needs to be cleaned up by eb_release_vmas() at this point, so the next one is set. If eb_add_vma() fails, neither the current nor the next vma is set to NULL, which is a source of a NULL deref bug described in the issue linked in the Closes tag. When entering eb_lookup_vmas(), the vma pointers are set to the slab poison value, instead of NULL. This doesn't matter for the actual lookup, since it gets overwritten anyway, however the eb_release_vmas() function only recognizes NULL as the stopping value, hence the pointers are being set to NULL as they go in case of intermediate failure. This patch changes the approach to filling them all with NULL at the start instead, rather than handling that manually during failure. (cherry picked from commit 08889b706d4f0b8d2352b7ca29c2d8df4d0787cd)
CVE-2025-71128 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: erspan: Initialize options_len before referencing options. The struct ip_tunnel_info has a flexible array member named options that is protected by a counted_by(options_len) attribute. The compiler will use this information to enforce runtime bounds checking deployed by FORTIFY_SOURCE string helpers. As laid out in the GCC documentation, the counter must be initialized before the first reference to the flexible array member. After scanning through the files that use struct ip_tunnel_info and also refer to options or options_len, it appears the normal case is to use the ip_tunnel_info_opts_set() helper. Said helper would initialize options_len properly before copying data into options, however in the GRE ERSPAN code a partial update is done, preventing the use of the helper function. Before this change the handling of ERSPAN traffic in GRE tunnels would cause a kernel panic when the kernel is compiled with GCC 15+ and having FORTIFY_SOURCE configured: memcpy: detected buffer overflow: 4 byte write of buffer size 0 Call Trace: <IRQ> __fortify_panic+0xd/0xf erspan_rcv.cold+0x68/0x83 ? ip_route_input_slow+0x816/0x9d0 gre_rcv+0x1b2/0x1c0 gre_rcv+0x8e/0x100 ? raw_v4_input+0x2a0/0x2b0 ip_protocol_deliver_rcu+0x1ea/0x210 ip_local_deliver_finish+0x86/0x110 ip_local_deliver+0x65/0x110 ? ip_rcv_finish_core+0xd6/0x360 ip_rcv+0x186/0x1a0 Reported-at: https://launchpad.net/bugs/2129580
CVE-2026-22686 1 Agentfront 1 Enclave 2026-01-14 10 Critical
Enclave is a secure JavaScript sandbox designed for safe AI agent code execution. Prior to 2.7.0, there is a critical sandbox escape vulnerability in enclave-vm that allows untrusted, sandboxed JavaScript code to execute arbitrary code in the host Node.js runtime. When a tool invocation fails, enclave-vm exposes a host-side Error object to sandboxed code. This Error object retains its host realm prototype chain, which can be traversed to reach the host Function constructor. An attacker can intentionally trigger a host error, then climb the prototype chain. Using the host Function constructor, arbitrary JavaScript can be compiled and executed in the host context, fully bypassing the sandbox and granting access to sensitive resources such as process.env, filesystem, and network. This breaks enclave-vm’s core security guarantee of isolating untrusted code. This vulnerability is fixed in 2.7.0.