| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: message: mptlan: Fix use after free bug in mptlan_remove() due to race condition
mptlan_probe() calls mpt_register_lan_device() which initializes the
&priv->post_buckets_task workqueue. A call to
mpt_lan_wake_post_buckets_task() will subsequently start the work.
During driver unload in mptlan_remove() the following race may occur:
CPU0 CPU1
|mpt_lan_post_receive_buckets_work()
mptlan_remove() |
free_netdev() |
kfree(dev); |
|
| dev->mtu
| //use
Fix this by finishing the work prior to cleaning up in mptlan_remove().
[mkp: we really should remove mptlan instead of attempting to fix it] |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix deadlock when converting an inline directory in nojournal mode
In no journal mode, ext4_finish_convert_inline_dir() can self-deadlock
by calling ext4_handle_dirty_dirblock() when it already has taken the
directory lock. There is a similar self-deadlock in
ext4_incvert_inline_data_nolock() for data files which we'll fix at
the same time.
A simple reproducer demonstrating the problem:
mke2fs -Fq -t ext2 -O inline_data -b 4k /dev/vdc 64
mount -t ext4 -o dirsync /dev/vdc /vdc
cd /vdc
mkdir file0
cd file0
touch file0
touch file1
attr -s BurnSpaceInEA -V abcde .
touch supercalifragilisticexpialidocious |
| In the Linux kernel, the following vulnerability has been resolved:
samples/bpf: Fix buffer overflow in tcp_basertt
Using sizeof(nv) or strlen(nv)+1 is correct. |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: fix null pointer dereference in ovl_get_acl_rcu()
Following process:
P1 P2
path_openat
link_path_walk
may_lookup
inode_permission(rcu)
ovl_permission
acl_permission_check
check_acl
get_cached_acl_rcu
ovl_get_inode_acl
realinode = ovl_inode_real(ovl_inode)
drop_cache
__dentry_kill(ovl_dentry)
iput(ovl_inode)
ovl_destroy_inode(ovl_inode)
dput(oi->__upperdentry)
dentry_kill(upperdentry)
dentry_unlink_inode
upperdentry->d_inode = NULL
ovl_inode_upper
upperdentry = ovl_i_dentry_upper(ovl_inode)
d_inode(upperdentry) // returns NULL
IS_POSIXACL(realinode) // NULL pointer dereference
, will trigger an null pointer dereference at realinode:
[ 205.472797] BUG: kernel NULL pointer dereference, address:
0000000000000028
[ 205.476701] CPU: 2 PID: 2713 Comm: ls Not tainted
6.3.0-12064-g2edfa098e750-dirty #1216
[ 205.478754] RIP: 0010:do_ovl_get_acl+0x5d/0x300
[ 205.489584] Call Trace:
[ 205.489812] <TASK>
[ 205.490014] ovl_get_inode_acl+0x26/0x30
[ 205.490466] get_cached_acl_rcu+0x61/0xa0
[ 205.490908] generic_permission+0x1bf/0x4e0
[ 205.491447] ovl_permission+0x79/0x1b0
[ 205.491917] inode_permission+0x15e/0x2c0
[ 205.492425] link_path_walk+0x115/0x550
[ 205.493311] path_lookupat.isra.0+0xb2/0x200
[ 205.493803] filename_lookup+0xda/0x240
[ 205.495747] vfs_fstatat+0x7b/0xb0
Fetch a reproducer in [Link].
Use the helper ovl_i_path_realinode() to get realinode and then do
non-nullptr checking. |
| In the Linux kernel, the following vulnerability has been resolved:
media: af9005: Fix null-ptr-deref in af9005_i2c_xfer
In af9005_i2c_xfer, msg is controlled by user. When msg[i].buf
is null and msg[i].len is zero, former checks on msg[i].buf would be
passed. Malicious data finally reach af9005_i2c_xfer. If accessing
msg[i].buf[0] without sanity check, null ptr deref would happen.
We add check on msg[i].len to prevent crash.
Similar commit:
commit 0ed554fd769a
("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") |
| In the Linux kernel, the following vulnerability has been resolved:
refscale: Fix uninitalized use of wait_queue_head_t
Running the refscale test occasionally crashes the kernel with the
following error:
[ 8569.952896] BUG: unable to handle page fault for address: ffffffffffffffe8
[ 8569.952900] #PF: supervisor read access in kernel mode
[ 8569.952902] #PF: error_code(0x0000) - not-present page
[ 8569.952904] PGD c4b048067 P4D c4b049067 PUD c4b04b067 PMD 0
[ 8569.952910] Oops: 0000 [#1] PREEMPT_RT SMP NOPTI
[ 8569.952916] Hardware name: Dell Inc. PowerEdge R750/0WMWCR, BIOS 1.2.4 05/28/2021
[ 8569.952917] RIP: 0010:prepare_to_wait_event+0x101/0x190
:
[ 8569.952940] Call Trace:
[ 8569.952941] <TASK>
[ 8569.952944] ref_scale_reader+0x380/0x4a0 [refscale]
[ 8569.952959] kthread+0x10e/0x130
[ 8569.952966] ret_from_fork+0x1f/0x30
[ 8569.952973] </TASK>
The likely cause is that init_waitqueue_head() is called after the call to
the torture_create_kthread() function that creates the ref_scale_reader
kthread. Although this init_waitqueue_head() call will very likely
complete before this kthread is created and starts running, it is
possible that the calling kthread will be delayed between the calls to
torture_create_kthread() and init_waitqueue_head(). In this case, the
new kthread will use the waitqueue head before it is properly initialized,
which is not good for the kernel's health and well-being.
The above crash happened here:
static inline void __add_wait_queue(...)
{
:
if (!(wq->flags & WQ_FLAG_PRIORITY)) <=== Crash here
The offset of flags from list_head entry in wait_queue_entry is
-0x18. If reader_tasks[i].wq.head.next is NULL as allocated reader_task
structure is zero initialized, the instruction will try to access address
0xffffffffffffffe8, which is exactly the fault address listed above.
This commit therefore invokes init_waitqueue_head() before creating
the kthread. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: pmc: Fix memory leak in amd_pmc_stb_debugfs_open_v2()
Function amd_pmc_stb_debugfs_open_v2() may be called when the STB
debug mechanism enabled.
When amd_pmc_send_cmd() fails, the 'buf' needs to be released. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: fix potential null-ptr-deref in device_add()
I got the following null-ptr-deref report while doing fault injection test:
BUG: kernel NULL pointer dereference, address: 0000000000000058
CPU: 2 PID: 278 Comm: 37-i2c-ds2482 Tainted: G B W N 6.1.0-rc3+
RIP: 0010:klist_put+0x2d/0xd0
Call Trace:
<TASK>
klist_remove+0xf1/0x1c0
device_release_driver_internal+0x196/0x210
bus_remove_device+0x1bd/0x240
device_add+0xd3d/0x1100
w1_add_master_device+0x476/0x490 [wire]
ds2482_probe+0x303/0x3e0 [ds2482]
This is how it happened:
w1_alloc_dev()
// The dev->driver is set to w1_master_driver.
memcpy(&dev->dev, device, sizeof(struct device));
device_add()
bus_add_device()
dpm_sysfs_add() // It fails, calls bus_remove_device.
// error path
bus_remove_device()
// The dev->driver is not null, but driver is not bound.
__device_release_driver()
klist_remove(&dev->p->knode_driver) <-- It causes null-ptr-deref.
// normal path
bus_probe_device() // It's not called yet.
device_bind_driver()
If dev->driver is set, in the error path after calling bus_add_device()
in device_add(), bus_remove_device() is called, then the device will be
detached from driver. But device_bind_driver() is not called yet, so it
causes null-ptr-deref while access the 'knode_driver'. To fix this, set
dev->driver to null in the error path before calling bus_remove_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/pmem: Fix nvdimm registration races
A loop of the form:
while true; do modprobe cxl_pci; modprobe -r cxl_pci; done
...fails with the following crash signature:
BUG: kernel NULL pointer dereference, address: 0000000000000040
[..]
RIP: 0010:cxl_internal_send_cmd+0x5/0xb0 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_pmem_ctl+0x121/0x240 [cxl_pmem]
nvdimm_get_config_data+0xd6/0x1a0 [libnvdimm]
nd_label_data_init+0x135/0x7e0 [libnvdimm]
nvdimm_probe+0xd6/0x1c0 [libnvdimm]
nvdimm_bus_probe+0x7a/0x1e0 [libnvdimm]
really_probe+0xde/0x380
__driver_probe_device+0x78/0x170
driver_probe_device+0x1f/0x90
__device_attach_driver+0x85/0x110
bus_for_each_drv+0x7d/0xc0
__device_attach+0xb4/0x1e0
bus_probe_device+0x9f/0xc0
device_add+0x445/0x9c0
nd_async_device_register+0xe/0x40 [libnvdimm]
async_run_entry_fn+0x30/0x130
...namely that the bottom half of async nvdimm device registration runs
after the CXL has already torn down the context that cxl_pmem_ctl()
needs. Unlike the ACPI NFIT case that benefits from launching multiple
nvdimm device registrations in parallel from those listed in the table,
CXL is already marked PROBE_PREFER_ASYNCHRONOUS. So provide for a
synchronous registration path to preclude this scenario. |
| In the Linux kernel, the following vulnerability has been resolved:
dm: fix a race condition in retrieve_deps
There's a race condition in the multipath target when retrieve_deps
races with multipath_message calling dm_get_device and dm_put_device.
retrieve_deps walks the list of open devices without holding any lock
but multipath may add or remove devices to the list while it is
running. The end result may be memory corruption or use-after-free
memory access.
See this description of a UAF with multipath_message():
https://listman.redhat.com/archives/dm-devel/2022-October/052373.html
Fix this bug by introducing a new rw semaphore "devices_lock". We grab
devices_lock for read in retrieve_deps and we grab it for write in
dm_get_device and dm_put_device. |
| Tinycontrol LAN Controller 1.58a contains an authentication bypass vulnerability that allows unauthenticated attackers to change admin passwords through a crafted API request. Attackers can exploit the /stm.cgi endpoint with a specially crafted authentication parameter to disable access controls and modify administrative credentials. |
| Akuvox Smart Intercom S539 contains an unauthenticated vulnerability that allows remote attackers to access live video streams by requesting the video.cgi endpoint on port 8080. Attackers can retrieve video stream data without authentication by directly accessing the specified endpoint on affected Akuvox doorphone and intercom devices. |
| Akuvox Smart Intercom S539 contains an improper access control vulnerability that allows users with 'User' privileges to modify API access settings and configurations. Attackers can exploit this vulnerability to escalate privileges and gain unauthorized access to administrative functionalities. |
| Anevia Flamingo XL 3.2.9 contains a restricted shell vulnerability that allows remote attackers to escape the sandboxed environment through the traceroute command. Attackers can exploit the traceroute command to inject shell commands and gain full root access to the device by bypassing the restricted login environment. |
| The Strong Testimonials plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check in the 'edit_rating' function in all versions up to, and including, 3.2.18. This makes it possible for authenticated attackers with Contributor-level access and above to modify or delete the rating meta on any testimonial post, including those created by other users, by reusing a valid nonce obtained from their own testimonial edit screen. |
| When system.enableCrossNamespaceCommands is enabled (on by default), the Temporal server permits certain workflow task commands (e.g. StartChildWorkflowExecution, SignalExternalWorkflowExecution, RequestCancelExternalWorkflowExecution) to target a different namespace than the namespace authorized at the gRPC boundary. The frontend authorizes RespondWorkflowTaskCompleted based on the outer request namespace, but the history service later resolves and executes the command using the namespace embedded in command attributes without authorizing the caller for that target namespace. This can allow a worker authorized for one namespace to create, signal, or cancel workflows in another namespace.
This issue affects Temporal: through 1.29.1. Fixed in 1.27.4, 1.28.2, 1.29.2. |
| Ksenia Security Lares 4.0 Home Automation version 1.6 contains a default credentials vulnerability that allows unauthorized attackers to gain administrative access. Attackers can exploit the weak default administrative credentials to obtain full control of the home automation system. |
| Ksenia Security Lares 4.0 version 1.6 contains a URL redirection vulnerability in the 'cmdOk.xml' script that allows attackers to manipulate the 'redirectPage' GET parameter. Attackers can craft malicious links that redirect authenticated users to arbitrary websites when clicking on a specially constructed link hosted on a trusted domain. |
| Ksenia Security Lares 4.0 Home Automation version 1.6 contains a critical security flaw that exposes the alarm system PIN in the 'basisInfo' XML file after authentication. Attackers can retrieve the PIN from the server response to bypass security measures and disable the alarm system without additional authentication. |
| A weakness has been identified in zhujunliang3 work_platform up to 6bc5a50bb527ce27f7906d11ea6ec139beb79c31. This vulnerability affects unknown code of the component Content Handler. Executing manipulation can lead to cross site scripting. The attack may be performed from remote. This product utilizes a rolling release system for continuous delivery, and as such, version information for affected or updated releases is not disclosed. The project was informed of the problem early through an issue report but has not responded yet. |