| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Do not over-allocate ftrace memory
The pg_remaining calculation in ftrace_process_locs() assumes that
ENTRIES_PER_PAGE multiplied by 2^order equals the actual capacity of the
allocated page group. However, ENTRIES_PER_PAGE is PAGE_SIZE / ENTRY_SIZE
(integer division). When PAGE_SIZE is not a multiple of ENTRY_SIZE (e.g.
4096 / 24 = 170 with remainder 16), high-order allocations (like 256 pages)
have significantly more capacity than 256 * 170. This leads to pg_remaining
being underestimated, which in turn makes skip (derived from skipped -
pg_remaining) larger than expected, causing the WARN(skip != remaining)
to trigger.
Extra allocated pages for ftrace: 2 with 654 skipped
WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7295 ftrace_process_locs+0x5bf/0x5e0
A similar problem in ftrace_allocate_records() can result in allocating
too many pages. This can trigger the second warning in
ftrace_process_locs().
Extra allocated pages for ftrace
WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7276 ftrace_process_locs+0x548/0x580
Use the actual capacity of a page group to determine the number of pages
to allocate. Have ftrace_allocate_pages() return the number of allocated
pages to avoid having to calculate it. Use the actual page group capacity
when validating the number of unused pages due to skipped entries.
Drop the definition of ENTRIES_PER_PAGE since it is no longer used. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix drm panic null pointer when driver not support atomic
When driver not support atomic, fb using plane->fb rather than
plane->state->fb.
(cherry picked from commit 2f2a72de673513247cd6fae14e53f6c40c5841ef) |
| In the Linux kernel, the following vulnerability has been resolved:
pNFS: Fix a deadlock when returning a delegation during open()
Ben Coddington reports seeing a hang in the following stack trace:
0 [ffffd0b50e1774e0] __schedule at ffffffff9ca05415
1 [ffffd0b50e177548] schedule at ffffffff9ca05717
2 [ffffd0b50e177558] bit_wait at ffffffff9ca061e1
3 [ffffd0b50e177568] __wait_on_bit at ffffffff9ca05cfb
4 [ffffd0b50e1775c8] out_of_line_wait_on_bit at ffffffff9ca05ea5
5 [ffffd0b50e177618] pnfs_roc at ffffffffc154207b [nfsv4]
6 [ffffd0b50e1776b8] _nfs4_proc_delegreturn at ffffffffc1506586 [nfsv4]
7 [ffffd0b50e177788] nfs4_proc_delegreturn at ffffffffc1507480 [nfsv4]
8 [ffffd0b50e1777f8] nfs_do_return_delegation at ffffffffc1523e41 [nfsv4]
9 [ffffd0b50e177838] nfs_inode_set_delegation at ffffffffc1524a75 [nfsv4]
10 [ffffd0b50e177888] nfs4_process_delegation at ffffffffc14f41dd [nfsv4]
11 [ffffd0b50e1778a0] _nfs4_opendata_to_nfs4_state at ffffffffc1503edf [nfsv4]
12 [ffffd0b50e1778c0] _nfs4_open_and_get_state at ffffffffc1504e56 [nfsv4]
13 [ffffd0b50e177978] _nfs4_do_open at ffffffffc15051b8 [nfsv4]
14 [ffffd0b50e1779f8] nfs4_do_open at ffffffffc150559c [nfsv4]
15 [ffffd0b50e177a80] nfs4_atomic_open at ffffffffc15057fb [nfsv4]
16 [ffffd0b50e177ad0] nfs4_file_open at ffffffffc15219be [nfsv4]
17 [ffffd0b50e177b78] do_dentry_open at ffffffff9c09e6ea
18 [ffffd0b50e177ba8] vfs_open at ffffffff9c0a082e
19 [ffffd0b50e177bd0] dentry_open at ffffffff9c0a0935
The issue is that the delegreturn is being asked to wait for a layout
return that cannot complete because a state recovery was initiated. The
state recovery cannot complete until the open() finishes processing the
delegations it was given.
The solution is to propagate the existing flags that indicate a
non-blocking call to the function pnfs_roc(), so that it knows not to
wait in this situation. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panel-simple: fix connector type for DataImage SCF0700C48GGU18 panel
The connector type for the DataImage SCF0700C48GGU18 panel is missing and
devm_drm_panel_bridge_add() requires connector type to be set. This leads
to a warning and a backtrace in the kernel log and panel does not work:
"
WARNING: CPU: 3 PID: 38 at drivers/gpu/drm/bridge/panel.c:379 devm_drm_of_get_bridge+0xac/0xb8
"
The warning is triggered by a check for valid connector type in
devm_drm_panel_bridge_add(). If there is no valid connector type
set for a panel, the warning is printed and panel is not added.
Fill in the missing connector type to fix the warning and make
the panel operational once again. |
| In the Linux kernel, the following vulnerability has been resolved:
phy: stm32-usphyc: Fix off by one in probe()
The "index" variable is used as an index into the usbphyc->phys[] array
which has usbphyc->nphys elements. So if it is equal to usbphyc->nphys
then it is one element out of bounds. The "index" comes from the
device tree so it's data that we trust and it's unlikely to be wrong,
however it's obviously still worth fixing the bug. Change the > to >=. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: xilinx: xdma: Fix regmap max_register
The max_register field is assigned the size of the register memory
region instead of the offset of the last register.
The result is that reading from the regmap via debugfs can cause
a segmentation fault:
tail /sys/kernel/debug/regmap/xdma.1.auto/registers
Unable to handle kernel paging request at virtual address ffff800082f70000
Mem abort info:
ESR = 0x0000000096000007
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x07: level 3 translation fault
[...]
Call trace:
regmap_mmio_read32le+0x10/0x30
_regmap_bus_reg_read+0x74/0xc0
_regmap_read+0x68/0x198
regmap_read+0x54/0x88
regmap_read_debugfs+0x140/0x380
regmap_map_read_file+0x30/0x48
full_proxy_read+0x68/0xc8
vfs_read+0xcc/0x310
ksys_read+0x7c/0x120
__arm64_sys_read+0x24/0x40
invoke_syscall.constprop.0+0x64/0x108
do_el0_svc+0xb0/0xd8
el0_svc+0x38/0x130
el0t_64_sync_handler+0x120/0x138
el0t_64_sync+0x194/0x198
Code: aa1e03e9 d503201f f9400000 8b214000 (b9400000)
---[ end trace 0000000000000000 ]---
note: tail[1217] exited with irqs disabled
note: tail[1217] exited with preempt_count 1
Segmentation fault |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock in wait_current_trans() due to ignored transaction type
When wait_current_trans() is called during start_transaction(), it
currently waits for a blocked transaction without considering whether
the given transaction type actually needs to wait for that particular
transaction state. The btrfs_blocked_trans_types[] array already defines
which transaction types should wait for which transaction states, but
this check was missing in wait_current_trans().
This can lead to a deadlock scenario involving two transactions and
pending ordered extents:
1. Transaction A is in TRANS_STATE_COMMIT_DOING state
2. A worker processing an ordered extent calls start_transaction()
with TRANS_JOIN
3. join_transaction() returns -EBUSY because Transaction A is in
TRANS_STATE_COMMIT_DOING
4. Transaction A moves to TRANS_STATE_UNBLOCKED and completes
5. A new Transaction B is created (TRANS_STATE_RUNNING)
6. The ordered extent from step 2 is added to Transaction B's
pending ordered extents
7. Transaction B immediately starts commit by another task and
enters TRANS_STATE_COMMIT_START
8. The worker finally reaches wait_current_trans(), sees Transaction B
in TRANS_STATE_COMMIT_START (a blocked state), and waits
unconditionally
9. However, TRANS_JOIN should NOT wait for TRANS_STATE_COMMIT_START
according to btrfs_blocked_trans_types[]
10. Transaction B is waiting for pending ordered extents to complete
11. Deadlock: Transaction B waits for ordered extent, ordered extent
waits for Transaction B
This can be illustrated by the following call stacks:
CPU0 CPU1
btrfs_finish_ordered_io()
start_transaction(TRANS_JOIN)
join_transaction()
# -EBUSY (Transaction A is
# TRANS_STATE_COMMIT_DOING)
# Transaction A completes
# Transaction B created
# ordered extent added to
# Transaction B's pending list
btrfs_commit_transaction()
# Transaction B enters
# TRANS_STATE_COMMIT_START
# waiting for pending ordered
# extents
wait_current_trans()
# waits for Transaction B
# (should not wait!)
Task bstore_kv_sync in btrfs_commit_transaction waiting for ordered
extents:
__schedule+0x2e7/0x8a0
schedule+0x64/0xe0
btrfs_commit_transaction+0xbf7/0xda0 [btrfs]
btrfs_sync_file+0x342/0x4d0 [btrfs]
__x64_sys_fdatasync+0x4b/0x80
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Task kworker in wait_current_trans waiting for transaction commit:
Workqueue: btrfs-syno_nocow btrfs_work_helper [btrfs]
__schedule+0x2e7/0x8a0
schedule+0x64/0xe0
wait_current_trans+0xb0/0x110 [btrfs]
start_transaction+0x346/0x5b0 [btrfs]
btrfs_finish_ordered_io.isra.0+0x49b/0x9c0 [btrfs]
btrfs_work_helper+0xe8/0x350 [btrfs]
process_one_work+0x1d3/0x3c0
worker_thread+0x4d/0x3e0
kthread+0x12d/0x150
ret_from_fork+0x1f/0x30
Fix this by passing the transaction type to wait_current_trans() and
checking btrfs_blocked_trans_types[cur_trans->state] against the given
type before deciding to wait. This ensures that transaction types which
are allowed to join during certain blocked states will not unnecessarily
wait and cause deadlocks. |
| In the Linux kernel, the following vulnerability has been resolved:
phy: qcom-qusb2: Fix NULL pointer dereference on early suspend
Enabling runtime PM before attaching the QPHY instance as driver data
can lead to a NULL pointer dereference in runtime PM callbacks that
expect valid driver data. There is a small window where the suspend
callback may run after PM runtime enabling and before runtime forbid.
This causes a sporadic crash during boot:
```
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a1
[...]
CPU: 0 UID: 0 PID: 11 Comm: kworker/0:1 Not tainted 6.16.7+ #116 PREEMPT
Workqueue: pm pm_runtime_work
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : qusb2_phy_runtime_suspend+0x14/0x1e0 [phy_qcom_qusb2]
lr : pm_generic_runtime_suspend+0x2c/0x44
[...]
```
Attach the QPHY instance as driver data before enabling runtime PM to
prevent NULL pointer dereference in runtime PM callbacks.
Reorder pm_runtime_enable() and pm_runtime_forbid() to prevent a
short window where an unnecessary runtime suspend can occur.
Use the devres-managed version to ensure PM runtime is symmetrically
disabled during driver removal for proper cleanup. |
| Sangoma FreePBX 115.0.16.26 and below, 14.0.13.11 and below, 13.0.197.13 and below have Incorrect Access Control. |
| Hono is a Web application framework that provides support for any JavaScript runtime. In versions from 1.1.0 to before 4.10.2, Hono’s JWT Auth Middleware does not provide a built-in aud (Audience) verification option, which can cause confused-deputy / token-mix-up issues: an API may accept a valid token that was issued for a different audience (e.g., another service) when multiple services share the same issuer/keys. This can lead to unintended cross-service access. Hono’s docs list verification options for iss/nbf/iat/exp only, with no aud support; RFC 7519 requires that when an aud claim is present, tokens MUST be rejected unless the processing party identifies itself in that claim. This issue has been patched in version 4.10.2. |
| An issue has been discovered in GitLab CE/EE affecting all versions starting from 10.5 before 14.3.6, all versions starting from 14.4 before 14.4.4, all versions starting from 14.5 before 14.5.2. Unauthorized external users could perform Server Side Requests via the CI Lint API |
| Hono is a Web application framework that provides support for any JavaScript runtime. Prior to version 4.11.7, IP Restriction Middleware in Hono is vulnerable to an IP address validation bypass. The `IPV4_REGEX` pattern and `convertIPv4ToBinary` function in `src/utils/ipaddr.ts` do not properly validate that IPv4 octet values are within the valid range of 0-255, allowing attackers to craft malformed IP addresses that bypass IP-based access controls. Version 4.11.7 contains a patch for the issue. |
| Hono is a Web application framework that provides support for any JavaScript runtime. Prior to version 4.11.7, Cache Middleware contains an information disclosure vulnerability caused by improper handling of HTTP cache control directives. The middleware does not respect standard cache control headers such as `Cache-Control: private` or `Cache-Control: no-store`, which may result in private or authenticated responses being cached and subsequently exposed to unauthorized users. Version 4.11.7 has a patch for the issue. |
| Hono is a Web application framework that provides support for any JavaScript runtime. Prior to version 4.11.7, Serve static Middleware for the Cloudflare Workers adapter contains an information disclosure vulnerability that may allow attackers to read arbitrary keys from the Workers environment. Improper validation of user-controlled paths can result in unintended access to internal asset keys. Version 4.11.7 contains a patch for the issue. |
| Hono is a Web application framework that provides support for any JavaScript runtime. Prior to version 4.11.7, a Cross-Site Scripting (XSS) vulnerability exists in the `ErrorBoundary` component of the hono/jsx library. Under certain usage patterns, untrusted user-controlled strings may be rendered as raw HTML, allowing arbitrary script execution in the victim's browser. Version 4.11.7 patches the issue. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in JS Help Desk JS Help Desk – Best Help Desk & Support Plugin allows Stored XSS.This issue affects JS Help Desk – Best Help Desk & Support Plugin: from n/a through 2.8.7. |
| Improper limitation of a pathname to a restricted directory ('Path Traversal') vulnerability in agent-related functionality in Synology Active Backup for Business before 2.7.1-13234, 2.7.1-23234 and 2.7.1-3234 allows remote authenticated users with administrator privileges to delete arbitrary files via unspecified vectors. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in Brian Hogg The Events Calendar Shortcode & Block the-events-calendar-shortcode allows Stored XSS.This issue affects The Events Calendar Shortcode & Block: from n/a through <= 3.1.1. |
| Vulnerability in Wikimedia Foundation MediaWiki. This vulnerability is associated with program files includes/user/User.Php.
This issue affects MediaWiki: from 1.27.0 before 1.39.13, 1.42.7 1.43.2, 1.44.0. |
| Vulnerability in Wikimedia Foundation AbuseFilter. This vulnerability is associated with program files includes/auth/AuthManager.Php.
This issue affects AbuseFilter: from fe0b1cb9e9691faf4d8d9bd80646589f6ec37615 before 1.43.2, 1.44.0. |