| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: fix NULL pointer dereference when setting max
An issue was triggered:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 15 UID: 0 PID: 658 Comm: bash Tainted: 6.19.0-rc6-next-2026012
Tainted: [O]=OOT_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
RIP: 0010:strcmp+0x10/0x30
RSP: 0018:ffffc900017f7dc0 EFLAGS: 00000246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff888107cd4358
RDX: 0000000019f73907 RSI: ffffffff82cc381a RDI: 0000000000000000
RBP: ffff8881016bef0d R08: 000000006c0e7145 R09: 0000000056c0e714
R10: 0000000000000001 R11: ffff888107cd4358 R12: 0007ffffffffffff
R13: ffff888101399200 R14: ffff888100fcb360 R15: 0007ffffffffffff
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000105c79000 CR4: 00000000000006f0
Call Trace:
<TASK>
dmemcg_limit_write.constprop.0+0x16d/0x390
? __pfx_set_resource_max+0x10/0x10
kernfs_fop_write_iter+0x14e/0x200
vfs_write+0x367/0x510
ksys_write+0x66/0xe0
do_syscall_64+0x6b/0x390
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f42697e1887
It was trriggered setting max without limitation, the command is like:
"echo test/region0 > dmem.max". To fix this issue, add check whether
options is valid after parsing the region_name. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF in binder_netlink_report()
Oneway transactions sent to frozen targets via binder_proc_transaction()
return a BR_TRANSACTION_PENDING_FROZEN error but they are still treated
as successful since the target is expected to thaw at some point. It is
then not safe to access 't' after BR_TRANSACTION_PENDING_FROZEN errors
as the transaction could have been consumed by the now thawed target.
This is the case for binder_netlink_report() which derreferences 't'
after a pending frozen error, as pointed out by the following KASAN
report:
==================================================================
BUG: KASAN: slab-use-after-free in binder_netlink_report.isra.0+0x694/0x6c8
Read of size 8 at addr ffff00000f98ba38 by task binder-util/522
CPU: 4 UID: 0 PID: 522 Comm: binder-util Not tainted 6.19.0-rc6-00015-gc03e9c42ae8f #1 PREEMPT
Hardware name: linux,dummy-virt (DT)
Call trace:
binder_netlink_report.isra.0+0x694/0x6c8
binder_transaction+0x66e4/0x79b8
binder_thread_write+0xab4/0x4440
binder_ioctl+0x1fd4/0x2940
[...]
Allocated by task 522:
__kmalloc_cache_noprof+0x17c/0x50c
binder_transaction+0x584/0x79b8
binder_thread_write+0xab4/0x4440
binder_ioctl+0x1fd4/0x2940
[...]
Freed by task 488:
kfree+0x1d0/0x420
binder_free_transaction+0x150/0x234
binder_thread_read+0x2d08/0x3ce4
binder_ioctl+0x488/0x2940
[...]
==================================================================
Instead, make a transaction copy so the data can be safely accessed by
binder_netlink_report() after a pending frozen error. While here, add a
comment about not using t->buffer in binder_netlink_report(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mld: cancel mlo_scan_start_wk
mlo_scan_start_wk is not canceled on disconnection. In fact, it is not
canceled anywhere except in the restart cleanup, where we don't really
have to.
This can cause an init-after-queue issue: if, for example, the work was
queued and then drv_change_interface got executed.
This can also cause use-after-free: if the work is executed after the
vif is freed. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (acpi_power_meter) Fix deadlocks related to acpi_power_meter_notify()
The acpi_power_meter driver's .notify() callback function,
acpi_power_meter_notify(), calls hwmon_device_unregister() under a lock
that is also acquired by callbacks in sysfs attributes of the device
being unregistered which is prone to deadlocks between sysfs access and
device removal.
Address this by moving the hwmon device removal in
acpi_power_meter_notify() outside the lock in question, but notice
that doing it alone is not sufficient because two concurrent
METER_NOTIFY_CONFIG notifications may be attempting to remove the
same device at the same time. To prevent that from happening, add a
new lock serializing the execution of the switch () statement in
acpi_power_meter_notify(). For simplicity, it is a static mutex
which should not be a problem from the performance perspective.
The new lock also allows the hwmon_device_register_with_info()
in acpi_power_meter_notify() to be called outside the inner lock
because it prevents the other notifications handled by that function
from manipulating the "resource" object while the hwmon device based
on it is being registered. The sending of ACPI netlink messages from
acpi_power_meter_notify() is serialized by the new lock too which
generally helps to ensure that the order of handling firmware
notifications is the same as the order of sending netlink messages
related to them.
In addition, notice that hwmon_device_register_with_info() may fail
in which case resource->hwmon_dev will become an error pointer,
so add checks to avoid attempting to unregister the hwmon device
pointer to by it in that case to acpi_power_meter_notify() and
acpi_power_meter_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: r8152: fix resume reset deadlock
rtl8152 can trigger device reset during reset which
potentially can result in a deadlock:
**** DPM device timeout after 10 seconds; 15 seconds until panic ****
Call Trace:
<TASK>
schedule+0x483/0x1370
schedule_preempt_disabled+0x15/0x30
__mutex_lock_common+0x1fd/0x470
__rtl8152_set_mac_address+0x80/0x1f0
dev_set_mac_address+0x7f/0x150
rtl8152_post_reset+0x72/0x150
usb_reset_device+0x1d0/0x220
rtl8152_resume+0x99/0xc0
usb_resume_interface+0x3e/0xc0
usb_resume_both+0x104/0x150
usb_resume+0x22/0x110
The problem is that rtl8152 resume calls reset under
tp->control mutex while reset basically re-enters rtl8152
and attempts to acquire the same tp->control lock once
again.
Reset INACCESSIBLE device outside of tp->control mutex
scope to avoid recursive mutex_lock() deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix NULL pointer dereference in ceph_mds_auth_match()
The CephFS kernel client has regression starting from 6.18-rc1.
We have issue in ceph_mds_auth_match() if fs_name == NULL:
const char fs_name = mdsc->fsc->mount_options->mds_namespace;
...
if (auth->match.fs_name && strcmp(auth->match.fs_name, fs_name)) {
/ fsname mismatch, try next one */
return 0;
}
Patrick Donnelly suggested that: In summary, we should definitely start
decoding `fs_name` from the MDSMap and do strict authorizations checks
against it. Note that the `-o mds_namespace=foo` should only be used for
selecting the file system to mount and nothing else. It's possible
no mds_namespace is specified but the kernel will mount the only
file system that exists which may have name "foo".
This patch reworks ceph_mdsmap_decode() and namespace_equals() with
the goal of supporting the suggested concept. Now struct ceph_mdsmap
contains m_fs_name field that receives copy of extracted FS name
by ceph_extract_encoded_string(). For the case of "old" CephFS file
systems, it is used "cephfs" name.
[ idryomov: replace redundant %*pE with %s in ceph_mdsmap_decode(),
get rid of a series of strlen() calls in ceph_namespace_match(),
drop changes to namespace_equals() body to avoid treating empty
mds_namespace as equal, drop changes to ceph_mdsc_handle_fsmap()
as namespace_equals() isn't an equivalent substitution there ] |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: aloop: Fix racy access at PCM trigger
The PCM trigger callback of aloop driver tries to check the PCM state
and stop the stream of the tied substream in the corresponding cable.
Since both check and stop operations are performed outside the cable
lock, this may result in UAF when a program attempts to trigger
frequently while opening/closing the tied stream, as spotted by
fuzzers.
For addressing the UAF, this patch changes two things:
- It covers the most of code in loopback_check_format() with
cable->lock spinlock, and add the proper NULL checks. This avoids
already some racy accesses.
- In addition, now we try to check the state of the capture PCM stream
that may be stopped in this function, which was the major pain point
leading to UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix use-after-free in iscsit_dec_session_usage_count()
In iscsit_dec_session_usage_count(), the function calls complete() while
holding the sess->session_usage_lock. Similar to the connection usage count
logic, the waiter signaled by complete() (e.g., in the session release
path) may wake up and free the iscsit_session structure immediately.
This creates a race condition where the current thread may attempt to
execute spin_unlock_bh() on a session structure that has already been
deallocated, resulting in a KASAN slab-use-after-free.
To resolve this, release the session_usage_lock before calling complete()
to ensure all dereferences of the sess pointer are finished before the
waiter is allowed to proceed with deallocation. |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: correctly handle FDA objects of length zero
Fix a bug where an empty FDA (fd array) object with 0 fds would cause an
out-of-bounds error. The previous implementation used `skip == 0` to
mean "this is a pointer fixup", but 0 is also the correct skip length
for an empty FDA. If the FDA is at the end of the buffer, then this
results in an attempt to write 8-bytes out of bounds. This is caught and
results in an EINVAL error being returned to userspace.
The pattern of using `skip == 0` as a special value originates from the
C-implementation of Binder. As part of fixing this bug, this pattern is
replaced with a Rust enum.
I considered the alternate option of not pushing a fixup when the length
is zero, but I think it's cleaner to just get rid of the zero-is-special
stuff.
The root cause of this bug was diagnosed by Gemini CLI on first try. I
used the following prompt:
> There appears to be a bug in @drivers/android/binder/thread.rs where
> the Fixups oob bug is triggered with 316 304 316 324. This implies
> that we somehow ended up with a fixup where buffer A has a pointer to
> buffer B, but the pointer is located at an index in buffer A that is
> out of bounds. Please investigate the code to find the bug. You may
> compare with @drivers/android/binder.c that implements this correctly. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: avoid pool UAF
An UAF issue was observed:
BUG: KASAN: slab-use-after-free in page_counter_uncharge+0x65/0x150
Write of size 8 at addr ffff888106715440 by task insmod/527
CPU: 4 UID: 0 PID: 527 Comm: insmod 6.19.0-rc7-next-20260129+ #11
Tainted: [O]=OOT_MODULE
Call Trace:
<TASK>
dump_stack_lvl+0x82/0xd0
kasan_report+0xca/0x100
kasan_check_range+0x39/0x1c0
page_counter_uncharge+0x65/0x150
dmem_cgroup_uncharge+0x1f/0x260
Allocated by task 527:
Freed by task 0:
The buggy address belongs to the object at ffff888106715400
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 64 bytes inside of
freed 512-byte region [ffff888106715400, ffff888106715600)
The buggy address belongs to the physical page:
Memory state around the buggy address:
ffff888106715300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888106715380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888106715400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888106715480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888106715500: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
The issue occurs because a pool can still be held by a caller after its
associated memory region is unregistered. The current implementation frees
the pool even if users still hold references to it (e.g., before uncharge
operations complete).
This patch adds a reference counter to each pool, ensuring that a pool is
only freed when its reference count drops to zero. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: Intel-thc-hid: Intel-thc: Add safety check for reading DMA buffer
Add DMA buffer readiness check before reading DMA buffer to avoid
unexpected NULL pointer accessing. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: imx: preserve error state in block data length handler
When a block read returns an invalid length, zero or >I2C_SMBUS_BLOCK_MAX,
the length handler sets the state to IMX_I2C_STATE_FAILED. However,
i2c_imx_master_isr() unconditionally overwrites this with
IMX_I2C_STATE_READ_CONTINUE, causing an endless read loop that overruns
buffers and crashes the system.
Guard the state transition to preserve error states set by the length
handler. |
| In the Linux kernel, the following vulnerability has been resolved:
procfs: avoid fetching build ID while holding VMA lock
Fix PROCMAP_QUERY to fetch optional build ID only after dropping mmap_lock
or per-VMA lock, whichever was used to lock VMA under question, to avoid
deadlock reported by syzbot:
-> #1 (&mm->mmap_lock){++++}-{4:4}:
__might_fault+0xed/0x170
_copy_to_iter+0x118/0x1720
copy_page_to_iter+0x12d/0x1e0
filemap_read+0x720/0x10a0
blkdev_read_iter+0x2b5/0x4e0
vfs_read+0x7f4/0xae0
ksys_read+0x12a/0x250
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (&sb->s_type->i_mutex_key#8){++++}-{4:4}:
__lock_acquire+0x1509/0x26d0
lock_acquire+0x185/0x340
down_read+0x98/0x490
blkdev_read_iter+0x2a7/0x4e0
__kernel_read+0x39a/0xa90
freader_fetch+0x1d5/0xa80
__build_id_parse.isra.0+0xea/0x6a0
do_procmap_query+0xd75/0x1050
procfs_procmap_ioctl+0x7a/0xb0
__x64_sys_ioctl+0x18e/0x210
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
rlock(&mm->mmap_lock);
lock(&sb->s_type->i_mutex_key#8);
lock(&mm->mmap_lock);
rlock(&sb->s_type->i_mutex_key#8);
*** DEADLOCK ***
This seems to be exacerbated (as we haven't seen these syzbot reports
before that) by the recent:
777a8560fd29 ("lib/buildid: use __kernel_read() for sleepable context")
To make this safe, we need to grab file refcount while VMA is still locked, but
other than that everything is pretty straightforward. Internal build_id_parse()
API assumes VMA is passed, but it only needs the underlying file reference, so
just add another variant build_id_parse_file() that expects file passed
directly.
[akpm@linux-foundation.org: fix up kerneldoc] |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix oops due to invalid pointer for kfree() in parse_longname()
This fixes a kernel oops when reading ceph snapshot directories (.snap),
for example by simply running `ls /mnt/my_ceph/.snap`.
The variable str is guarded by __free(kfree), but advanced by one for
skipping the initial '_' in snapshot names. Thus, kfree() is called
with an invalid pointer. This patch removes the need for advancing the
pointer so kfree() is called with correct memory pointer.
Steps to reproduce:
1. Create snapshots on a cephfs volume (I've 63 snaps in my testcase)
2. Add cephfs mount to fstab
$ echo "samba-fileserver@.files=/volumes/datapool/stuff/3461082b-ecc9-4e82-8549-3fd2590d3fb6 /mnt/test/stuff ceph acl,noatime,_netdev 0 0" >> /etc/fstab
3. Reboot the system
$ systemctl reboot
4. Check if it's really mounted
$ mount | grep stuff
5. List snapshots (expected 63 snapshots on my system)
$ ls /mnt/test/stuff/.snap
Now ls hangs forever and the kernel log shows the oops. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer in tegra_qspi_combined_seq_xfer
The curr_xfer field is read by the IRQ handler without holding the lock
to check if a transfer is in progress. When clearing curr_xfer in the
combined sequence transfer loop, protect it with the spinlock to prevent
a race with the interrupt handler.
Protect the curr_xfer clearing at the exit path of
tegra_qspi_combined_seq_xfer() with the spinlock to prevent a race
with the interrupt handler that reads this field.
Without this protection, the IRQ handler could read a partially updated
curr_xfer value, leading to NULL pointer dereference or use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
net: cpsw_new: Execute ndo_set_rx_mode callback in a work queue
Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this
change triggered the following call trace on my BeagleBone Black board:
WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/496
RTNL: assertion failed at net/8021q/vlan_core.c (236)
Modules linked in:
CPU: 0 UID: 997 PID: 496 Comm: rpcbind Not tainted 6.19.0-rc6-next-20260122-yocto-standard+ #8 PREEMPT
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x28/0x2c
show_stack from dump_stack_lvl+0x30/0x38
dump_stack_lvl from __warn+0xb8/0x11c
__warn from warn_slowpath_fmt+0x130/0x194
warn_slowpath_fmt from vlan_for_each+0x120/0x124
vlan_for_each from cpsw_add_mc_addr+0x54/0xd8
cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec
__hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88
__dev_mc_add from igmp6_group_added+0x84/0xec
igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0
__ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4
__ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168
do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8
ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c
do_sock_setsockopt from __sys_setsockopt+0x84/0xac
__sys_setsockopt from ret_fast_syscall+0x0/0x5
This trace occurs because vlan_for_each() is called within
cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held.
Since modifying vlan_for_each() to operate without the RTNL lock is not
straightforward, and because ndo_set_rx_mode() is invoked both with and
without the RTNL lock across different code paths, simply adding
rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution.
To resolve this issue, we opt to execute the actual processing within
a work queue, following the approach used by the icssg-prueth driver. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: cls_u32: use skb_header_pointer_careful()
skb_header_pointer() does not fully validate negative @offset values.
Use skb_header_pointer_careful() instead.
GangMin Kim provided a report and a repro fooling u32_classify():
BUG: KASAN: slab-out-of-bounds in u32_classify+0x1180/0x11b0
net/sched/cls_u32.c:221 |
| In the Linux kernel, the following vulnerability has been resolved:
dpaa2-switch: prevent ZERO_SIZE_PTR dereference when num_ifs is zero
The driver allocates arrays for ports, FDBs, and filter blocks using
kcalloc() with ethsw->sw_attr.num_ifs as the element count. When the
device reports zero interfaces (either due to hardware configuration
or firmware issues), kcalloc(0, ...) returns ZERO_SIZE_PTR (0x10)
instead of NULL.
Later in dpaa2_switch_probe(), the NAPI initialization unconditionally
accesses ethsw->ports[0]->netdev, which attempts to dereference
ZERO_SIZE_PTR (address 0x10), resulting in a kernel panic.
Add a check to ensure num_ifs is greater than zero after retrieving
device attributes. This prevents the zero-sized allocations and
subsequent invalid pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Prevent excessive number of frames
In this case, the user constructed the parameters with maxpacksize 40
for rate 22050 / pps 1000, and packsize[0] 22 packsize[1] 23. The buffer
size for each data URB is maxpacksize * packets, which in this example
is 40 * 6 = 240; When the user performs a write operation to send audio
data into the ALSA PCM playback stream, the calculated number of frames
is packsize[0] * packets = 264, which exceeds the allocated URB buffer
size, triggering the out-of-bounds (OOB) issue reported by syzbot [1].
Added a check for the number of single data URB frames when calculating
the number of frames to prevent [1].
[1]
BUG: KASAN: slab-out-of-bounds in copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
Write of size 264 at addr ffff88804337e800 by task syz.0.17/5506
Call Trace:
copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
prepare_playback_urb+0x953/0x13d0 sound/usb/pcm.c:1611
prepare_outbound_urb+0x377/0xc50 sound/usb/endpoint.c:333 |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix error recovery in macvlan_common_newlink()
valis provided a nice repro to crash the kernel:
ip link add p1 type veth peer p2
ip link set address 00:00:00:00:00:20 dev p1
ip link set up dev p1
ip link set up dev p2
ip link add mv0 link p2 type macvlan mode source
ip link add invalid% link p2 type macvlan mode source macaddr add 00:00:00:00:00:20
ping -c1 -I p1 1.2.3.4
He also gave a very detailed analysis:
<quote valis>
The issue is triggered when a new macvlan link is created with
MACVLAN_MODE_SOURCE mode and MACVLAN_MACADDR_ADD (or
MACVLAN_MACADDR_SET) parameter, lower device already has a macvlan
port and register_netdevice() called from macvlan_common_newlink()
fails (e.g. because of the invalid link name).
In this case macvlan_hash_add_source is called from
macvlan_change_sources() / macvlan_common_newlink():
This adds a reference to vlan to the port's vlan_source_hash using
macvlan_source_entry.
vlan is a pointer to the priv data of the link that is being created.
When register_netdevice() fails, the error is returned from
macvlan_newlink() to rtnl_newlink_create():
if (ops->newlink)
err = ops->newlink(dev, ¶ms, extack);
else
err = register_netdevice(dev);
if (err < 0) {
free_netdev(dev);
goto out;
}
and free_netdev() is called, causing a kvfree() on the struct
net_device that is still referenced in the source entry attached to
the lower device's macvlan port.
Now all packets sent on the macvlan port with a matching source mac
address will trigger a use-after-free in macvlan_forward_source().
</quote valis>
With all that, my fix is to make sure we call macvlan_flush_sources()
regardless of @create value whenever "goto destroy_macvlan_port;"
path is taken.
Many thanks to valis for following up on this issue. |