| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
efi: ssdt: Don't free memory if ACPI table was loaded successfully
Amadeusz reports KASAN use-after-free errors introduced by commit
3881ee0b1edc ("efi: avoid efivars layer when loading SSDTs from
variables"). The problem appears to be that the memory that holds the
new ACPI table is now freed unconditionally, instead of only when the
ACPI core reported a failure to load the table.
So let's fix this, by omitting the kfree() on success. |
| CrawlChat is an open-source, AI-powered platform that transforms technical documentation into intelligent chatbots. Prior to version 0.0.8, a non-existing permission check for the CrawlChat's Discord bot allows non-manage guild users to put malicious content onto the collection knowledge base. Usually, admin / mods of a Discord guild use the `jigsaw` emoji to save a specific message (chain) onto the collection's knowledge base of CrawlChat. Unfortunately an permission check (for e.g. MANAGE_SERVER; MANAGE_MESSAGES etc.) was not done, allowing normal users of the guild to information to the knowledge base. With targeting specific parts that are commonly asked, users can manipulate the content given out by the bot (on all integrations), to e.g. redirect users to a malicious site, or send information to a malicious user. Version 0.0.8 patches the issue. |
| A vulnerability has been found in Yonyou KSOA 9.0. Impacted is an unknown function of the file /kmc/save_catalog.jsp of the component HTTP GET Parameter Handler. Such manipulation of the argument catalogid leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| In the Linux kernel, the following vulnerability has been resolved:
batman-adv: fix OOB read/write in network-coding decode
batadv_nc_skb_decode_packet() trusts coded_len and checks only against
skb->len. XOR starts at sizeof(struct batadv_unicast_packet), reducing
payload headroom, and the source skb length is not verified, allowing an
out-of-bounds read and a small out-of-bounds write.
Validate that coded_len fits within the payload area of both destination
and source sk_buffs before XORing. |
| A vulnerability was found in Yonyou KSOA 9.0. The affected element is an unknown function of the file /kmf/edit_folder.jsp of the component HTTP GET Parameter Handler. Performing a manipulation of the argument folderid results in sql injection. The attack can be initiated remotely. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix buffer free/clear order in deferred receive path
Fix a use-after-free window by correcting the buffer release sequence in
the deferred receive path. The code freed the RQ buffer first and only
then cleared the context pointer under the lock. Concurrent paths (e.g.,
ABTS and the repost path) also inspect and release the same pointer under
the lock, so the old order could lead to double-free/UAF.
Note that the repost path already uses the correct pattern: detach the
pointer under the lock, then free it after dropping the lock. The
deferred path should do the same. |
| FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to version 3.21.0, `xf_Pointer_New` frees `cursorPixels` on failure, then `pointer_free` calls `xf_Pointer_Free` and frees it again, triggering ASan UAF. A malicious server can trigger a client‑side use after free, causing a crash (DoS) and potential heap corruption with code‑execution risk depending on allocator behavior and surrounding heap layout. Version 3.21.0 contains a patch for the issue. |
| Svelte devalue is a JavaScript library that serializes values into strings when JSON.stringify isn't sufficient for the job. From 5.1.0 to 5.6.1, certain inputs can cause devalue.parse to consume excessive CPU time and/or memory, potentially leading to denial of service in systems that parse input from untrusted sources. This affects applications using devalue.parse on externally-supplied data. The root cause is the ArrayBuffer hydration expecting base64 encoded strings as input, but not checking the assumption before decoding the input. This vulnerability is fixed in 5.6.2. |
| In SchedMD Slurm before 24.11.5, 24.05.8, and 23.11.11, the accounting system can allow a Coordinator to promote a user to Administrator. |
| Svelte devalue is a JavaScript library that serializes values into strings when JSON.stringify isn't sufficient for the job. From 5.3.0 to 5.6.1, certain inputs can cause devalue.parse to consume excessive CPU time and/or memory, potentially leading to denial of service in systems that parse input from untrusted sources. This affects applications using devalue.parse on externally-supplied data. The root cause is the typed array hydration expecting an ArrayBuffer as input, but not checking the assumption before creating the typed array. This vulnerability is fixed in 5.6.2. |
| A vulnerability was determined in Yonyou KSOA 9.0. The impacted element is an unknown function of the file /kmf/folder.jsp of the component HTTP GET Parameter Handler. Executing a manipulation of the argument folderid can lead to sql injection. The attack can be launched remotely. The exploit has been publicly disclosed and may be utilized. The vendor was contacted early about this disclosure but did not respond in any way. |
| Paessler PRTG Network Monitor before 25.4.114 allows Denial-of-Service (DoS) by an authenticated attacker via the Notification Contacts functionality. |
| Paessler PRTG Network Monitor before 25.4.114 allows XSS by an unauthenticated attacker via the filter parameter. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: prevent release journal inode after journal shutdown
Before calling ocfs2_delete_osb(), ocfs2_journal_shutdown() has already
been executed in ocfs2_dismount_volume(), so osb->journal must be NULL.
Therefore, the following calltrace will inevitably fail when it reaches
jbd2_journal_release_jbd_inode().
ocfs2_dismount_volume()->
ocfs2_delete_osb()->
ocfs2_free_slot_info()->
__ocfs2_free_slot_info()->
evict()->
ocfs2_evict_inode()->
ocfs2_clear_inode()->
jbd2_journal_release_jbd_inode(osb->journal->j_journal,
Adding osb->journal checks will prevent null-ptr-deref during the above
execution path. |
| Paessler PRTG Network Monitor before 25.4.114 allows XSS by an unauthenticated attacker via the tag parameter. |
| FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to version 3.21.0, offscreen bitmap deletion leaves `gdi->drawing` pointing to freed memory, causing UAF when related update packets arrive. A malicious server can trigger a client‑side use after free, causing a crash (DoS) and potential heap corruption with code‑execution risk depending on allocator behavior and surrounding heap layout. Version 3.21.0 contains a patch for the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: slub: avoid wake up kswapd in set_track_prepare
set_track_prepare() can incur lock recursion.
The issue is that it is called from hrtimer_start_range_ns
holding the per_cpu(hrtimer_bases)[n].lock, but when enabled
CONFIG_DEBUG_OBJECTS_TIMERS, may wake up kswapd in set_track_prepare,
and try to hold the per_cpu(hrtimer_bases)[n].lock.
Avoid deadlock caused by implicitly waking up kswapd by passing in
allocation flags, which do not contain __GFP_KSWAPD_RECLAIM in the
debug_objects_fill_pool() case. Inside stack depot they are processed by
gfp_nested_mask().
Since ___slab_alloc() has preemption disabled, we mask out
__GFP_DIRECT_RECLAIM from the flags there.
The oops looks something like:
BUG: spinlock recursion on CPU#3, swapper/3/0
lock: 0xffffff8a4bf29c80, .magic: dead4ead, .owner: swapper/3/0, .owner_cpu: 3
Hardware name: Qualcomm Technologies, Inc. Popsicle based on SM8850 (DT)
Call trace:
spin_bug+0x0
_raw_spin_lock_irqsave+0x80
hrtimer_try_to_cancel+0x94
task_contending+0x10c
enqueue_dl_entity+0x2a4
dl_server_start+0x74
enqueue_task_fair+0x568
enqueue_task+0xac
do_activate_task+0x14c
ttwu_do_activate+0xcc
try_to_wake_up+0x6c8
default_wake_function+0x20
autoremove_wake_function+0x1c
__wake_up+0xac
wakeup_kswapd+0x19c
wake_all_kswapds+0x78
__alloc_pages_slowpath+0x1ac
__alloc_pages_noprof+0x298
stack_depot_save_flags+0x6b0
stack_depot_save+0x14
set_track_prepare+0x5c
___slab_alloc+0xccc
__kmalloc_cache_noprof+0x470
__set_page_owner+0x2bc
post_alloc_hook[jt]+0x1b8
prep_new_page+0x28
get_page_from_freelist+0x1edc
__alloc_pages_noprof+0x13c
alloc_slab_page+0x244
allocate_slab+0x7c
___slab_alloc+0x8e8
kmem_cache_alloc_noprof+0x450
debug_objects_fill_pool+0x22c
debug_object_activate+0x40
enqueue_hrtimer[jt]+0xdc
hrtimer_start_range_ns+0x5f8
... |
| In the Linux kernel, the following vulnerability has been resolved:
mm: move page table sync declarations to linux/pgtable.h
During our internal testing, we started observing intermittent boot
failures when the machine uses 4-level paging and has a large amount of
persistent memory:
BUG: unable to handle page fault for address: ffffe70000000034
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP NOPTI
RIP: 0010:__init_single_page+0x9/0x6d
Call Trace:
<TASK>
__init_zone_device_page+0x17/0x5d
memmap_init_zone_device+0x154/0x1bb
pagemap_range+0x2e0/0x40f
memremap_pages+0x10b/0x2f0
devm_memremap_pages+0x1e/0x60
dev_dax_probe+0xce/0x2ec [device_dax]
dax_bus_probe+0x6d/0xc9
[... snip ...]
</TASK>
It turns out that the kernel panics while initializing vmemmap (struct
page array) when the vmemmap region spans two PGD entries, because the new
PGD entry is only installed in init_mm.pgd, but not in the page tables of
other tasks.
And looking at __populate_section_memmap():
if (vmemmap_can_optimize(altmap, pgmap))
// does not sync top level page tables
r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
else
// sync top level page tables in x86
r = vmemmap_populate(start, end, nid, altmap);
In the normal path, vmemmap_populate() in arch/x86/mm/init_64.c
synchronizes the top level page table (See commit 9b861528a801 ("x86-64,
mem: Update all PGDs for direct mapping and vmemmap mapping changes")) so
that all tasks in the system can see the new vmemmap area.
However, when vmemmap_can_optimize() returns true, the optimized path
skips synchronization of top-level page tables. This is because
vmemmap_populate_compound_pages() is implemented in core MM code, which
does not handle synchronization of the top-level page tables. Instead,
the core MM has historically relied on each architecture to perform this
synchronization manually.
We're not the first party to encounter a crash caused by not-sync'd top
level page tables: earlier this year, Gwan-gyeong Mun attempted to address
the issue [1] [2] after hitting a kernel panic when x86 code accessed the
vmemmap area before the corresponding top-level entries were synced. At
that time, the issue was believed to be triggered only when struct page
was enlarged for debugging purposes, and the patch did not get further
updates.
It turns out that current approach of relying on each arch to handle the
page table sync manually is fragile because 1) it's easy to forget to sync
the top level page table, and 2) it's also easy to overlook that the
kernel should not access the vmemmap and direct mapping areas before the
sync.
# The solution: Make page table sync more code robust and harder to miss
To address this, Dave Hansen suggested [3] [4] introducing
{pgd,p4d}_populate_kernel() for updating kernel portion of the page tables
and allow each architecture to explicitly perform synchronization when
installing top-level entries. With this approach, we no longer need to
worry about missing the sync step, reducing the risk of future
regressions.
The new interface reuses existing ARCH_PAGE_TABLE_SYNC_MASK,
PGTBL_P*D_MODIFIED and arch_sync_kernel_mappings() facility used by
vmalloc and ioremap to synchronize page tables.
pgd_populate_kernel() looks like this:
static inline void pgd_populate_kernel(unsigned long addr, pgd_t *pgd,
p4d_t *p4d)
{
pgd_populate(&init_mm, pgd, p4d);
if (ARCH_PAGE_TABLE_SYNC_MASK & PGTBL_PGD_MODIFIED)
arch_sync_kernel_mappings(addr, addr);
}
It is worth noting that vmalloc() and apply_to_range() carefully
synchronizes page tables by calling p*d_alloc_track() and
arch_sync_kernel_mappings(), and thus they are not affected by
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm/64: define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings()
Define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() to ensure
page tables are properly synchronized when calling p*d_populate_kernel().
For 5-level paging, synchronization is performed via
pgd_populate_kernel(). In 4-level paging, pgd_populate() is a no-op, so
synchronization is instead performed at the P4D level via
p4d_populate_kernel().
This fixes intermittent boot failures on systems using 4-level paging and
a large amount of persistent memory:
BUG: unable to handle page fault for address: ffffe70000000034
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP NOPTI
RIP: 0010:__init_single_page+0x9/0x6d
Call Trace:
<TASK>
__init_zone_device_page+0x17/0x5d
memmap_init_zone_device+0x154/0x1bb
pagemap_range+0x2e0/0x40f
memremap_pages+0x10b/0x2f0
devm_memremap_pages+0x1e/0x60
dev_dax_probe+0xce/0x2ec [device_dax]
dax_bus_probe+0x6d/0xc9
[... snip ...]
</TASK>
It also fixes a crash in vmemmap_set_pmd() caused by accessing vmemmap
before sync_global_pgds() [1]:
BUG: unable to handle page fault for address: ffffeb3ff1200000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: Oops: 0002 [#1] PREEMPT SMP NOPTI
Tainted: [W]=WARN
RIP: 0010:vmemmap_set_pmd+0xff/0x230
<TASK>
vmemmap_populate_hugepages+0x176/0x180
vmemmap_populate+0x34/0x80
__populate_section_memmap+0x41/0x90
sparse_add_section+0x121/0x3e0
__add_pages+0xba/0x150
add_pages+0x1d/0x70
memremap_pages+0x3dc/0x810
devm_memremap_pages+0x1c/0x60
xe_devm_add+0x8b/0x100 [xe]
xe_tile_init_noalloc+0x6a/0x70 [xe]
xe_device_probe+0x48c/0x740 [xe]
[... snip ...] |
| A weakness has been identified in TOTOLINK A3700R 9.1.2u.5822_B20200513. This affects the function setWiFiEasyGuestCfg of the file /cgi-bin/cstecgi.cgi. Executing a manipulation of the argument ssid can lead to buffer overflow. The attack may be launched remotely. The exploit has been made available to the public and could be used for attacks. |