| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The WP-DownloadManager plugin for WordPress is vulnerable to Path Traversal in all versions up to, and including, 1.69 via the 'download_path' configuration parameter. This is due to insufficient validation of the download path setting, which allows directory traversal sequences to bypass the WP_CONTENT_DIR prefix check. This makes it possible for authenticated attackers, with Administrator-level access and above, to configure the plugin to list and access arbitrary files on the server by exploiting the file browser functionality. |
| The WP-DownloadManager plugin for WordPress is vulnerable to Path Traversal in all versions up to, and including, 1.69 via the 'file' parameter in the file deletion functionality. This is due to insufficient validation of user-supplied file paths, allowing directory traversal sequences. This makes it possible for authenticated attackers, with Administrator-level access and above, to delete arbitrary files on the server, which can lead to remote code execution when critical files like wp-config.php are deleted. |
| Path traversal vulnerability in the AMR Printer Management 1.01 Beta web service, which allows remote attackers to read arbitrary files from the underlying Windows system by using specially crafted path traversal sequences in requests directed to the web management service. The service is accessible without authentication and runs with elevated privileges, amplifying the impact of the vulnerability. An attacker can exploit this condition to access sensitive and privileged files on the system using path traversal payloads. Successful exploitation of this vulnerability could lead to the unauthorized disclosure of internal system information, compromising the confidentiality of the affected environment. |
| Improper Input Validation vulnerability in Apache Tomcat.
Tomcat did not limit HTTP/0.9 requests to the GET method. If a security
constraint was configured to allow HEAD requests to a URI but deny GET
requests, the user could bypass that constraint on GET requests by
sending a (specification invalid) HEAD request using HTTP/0.9.
This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.14, from 10.1.0-M1 through 10.1.49, from 9.0.0.M1 through 9.0.112.
Older, EOL versions are also affected.
Users are recommended to upgrade to version 11.0.15 or later, 10.1.50 or later or 9.0.113 or later, which fixes the issue. |
| Improper Input Validation vulnerability in Apache Tomcat Native, Apache Tomcat.
When using an OCSP responder, Tomcat Native (and Tomcat's FFM port of the Tomcat Native code) did not complete verification or freshness checks on the OCSP response which could allow certificate revocation to be bypassed.
This issue affects Apache Tomcat Native: from 1.3.0 through 1.3.4, from 2.0.0 through 2.0.11; Apache Tomcat: from 11.0.0-M1 through 11.0.17, from 10.1.0-M7 through 10.1.51, from 9.0.83 through 9.0.114.
The following versions were EOL at the time the CVE was created but are
known to be affected: from 1.1.23 through 1.1.34, from 1.2.0 through 1.2.39. Older EOL versions are not affected.
Apache Tomcat Native users are recommended to upgrade to versions 1.3.5 or later or 2.0.12 or later, which fix the issue.
Apache Tomcat users are recommended to upgrade to versions 11.0.18 or later, 10.1.52 or later or 9.0.115 or later which fix the issue. |
| The Gutenberg Blocks with AI by Kadence WP plugin for WordPress is vulnerable to Missing Authorization in all versions up to, and including, 3.6.1. This is due to a missing capability check in the `process_image_data_ajax_callback()` function which handles the `kadence_import_process_image_data` AJAX action. The function's authorization check via `verify_ajax_call()` only validates `edit_posts` capability but fails to check for the `upload_files` capability. This makes it possible for authenticated attackers, with Contributor-level access and above, to upload arbitrary images from remote URLs to the WordPress Media Library, bypassing the standard WordPress capability restriction that prevents Contributors from uploading files. |
| Cross-site scripting in REST Management Interface in Payara Server <4.1.2.191.54, <5.83.0, <6.34.0, <7.2026.1 allows an attacker to mislead the administrator to change the admin password via URL Payload. |
| NVIDIA NeMo Framework for all platforms contains a vulnerability in the ASR Evaluator utility, where a user could cause a command injection by supplying crafted input to a configuration parameter. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, or information disclosure. |
| NVIDIA NeMo Framework contains a vulnerability where an attacker could cause remote code execution. A successful exploit of this vulnerability might lead to code execution, denial of service, information disclosure, and data tampering. |
| NVIDIA NeMo Framework contains a vulnerability where an attacker could cause remote code execution. A successful exploit of this vulnerability might lead to code execution, denial of service, information disclosure, and data tampering. |
| A vulnerability has been identified in the OPC.Testclient utility, which is included in Rexroth IndraWorks. All versions prior to 15V24 are affected. This flaw allows an attacker to execute arbitrary code on the user's system by parsing a manipulated file containing malicious serialized data. Exploitation requires user interaction, specifically opening a specially crafted file, which then causes the application to deserialize the malicious data, enabling Remote Code Execution (RCE). This can lead to a complete compromise of the system running the OPC.Testclient. |
| NVIDIA Megatron Bridge contains a vulnerability in a data shuffling tutorial, where malicious input could cause a code injection. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA NeMo Framework contains a vulnerability where an attacker could cause remote code execution in distributed environments. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| A vulnerability has been identified in Rexroth IndraWorks. This flaw allows an attacker to execute arbitrary code on the user's system by parsing a manipulated file containing malicious serialized data. Exploitation requires user interaction, specifically opening a specially crafted file, which then causes the application to deserialize the malicious data, enabling Remote Code Execution (RCE). This can lead to a complete compromise of the system running Rexroth IndraWorks. |
| StorageGRID (formerly StorageGRID Webscale) versions prior to 11.9.0.12 and 12.0.0.4 with Single Sign-on enabled and configured to use Microsoft Entra ID (formerly Azure AD) as an IdP are susceptible to a Server-Side Request Forgery (SSRF) vulnerability. Successful exploit could allow an authenticated attacker with low privileges to delete configuration data or deny access to some resources. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: annotate data-races around slave->last_rx
slave->last_rx and slave->target_last_arp_rx[...] can be read and written
locklessly. Add READ_ONCE() and WRITE_ONCE() annotations.
syzbot reported:
BUG: KCSAN: data-race in bond_rcv_validate / bond_rcv_validate
write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 1:
bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335
bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533
__netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039
__netif_receive_skb_one_core net/core/dev.c:6150 [inline]
__netif_receive_skb+0x59/0x270 net/core/dev.c:6265
netif_receive_skb_internal net/core/dev.c:6351 [inline]
netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410
...
write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 0:
bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335
bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533
__netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039
__netif_receive_skb_one_core net/core/dev.c:6150 [inline]
__netif_receive_skb+0x59/0x270 net/core/dev.c:6265
netif_receive_skb_internal net/core/dev.c:6351 [inline]
netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410
br_netif_receive_skb net/bridge/br_input.c:30 [inline]
NF_HOOK include/linux/netfilter.h:318 [inline]
...
value changed: 0x0000000100005365 -> 0x0000000100005366 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: reject new transactions if the fs is fully read-only
[BUG]
There is a bug report where a heavily fuzzed fs is mounted with all
rescue mount options, which leads to the following warnings during
unmount:
BTRFS: Transaction aborted (error -22)
Modules linked in:
CPU: 0 UID: 0 PID: 9758 Comm: repro.out Not tainted
6.19.0-rc5-00002-gb71e635feefc #7 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:find_free_extent_update_loop fs/btrfs/extent-tree.c:4208 [inline]
RIP: 0010:find_free_extent+0x52f0/0x5d20 fs/btrfs/extent-tree.c:4611
Call Trace:
<TASK>
btrfs_reserve_extent+0x2cd/0x790 fs/btrfs/extent-tree.c:4705
btrfs_alloc_tree_block+0x1e1/0x10e0 fs/btrfs/extent-tree.c:5157
btrfs_force_cow_block+0x578/0x2410 fs/btrfs/ctree.c:517
btrfs_cow_block+0x3c4/0xa80 fs/btrfs/ctree.c:708
btrfs_search_slot+0xcad/0x2b50 fs/btrfs/ctree.c:2130
btrfs_truncate_inode_items+0x45d/0x2350 fs/btrfs/inode-item.c:499
btrfs_evict_inode+0x923/0xe70 fs/btrfs/inode.c:5628
evict+0x5f4/0xae0 fs/inode.c:837
__dentry_kill+0x209/0x660 fs/dcache.c:670
finish_dput+0xc9/0x480 fs/dcache.c:879
shrink_dcache_for_umount+0xa0/0x170 fs/dcache.c:1661
generic_shutdown_super+0x67/0x2c0 fs/super.c:621
kill_anon_super+0x3b/0x70 fs/super.c:1289
btrfs_kill_super+0x41/0x50 fs/btrfs/super.c:2127
deactivate_locked_super+0xbc/0x130 fs/super.c:474
cleanup_mnt+0x425/0x4c0 fs/namespace.c:1318
task_work_run+0x1d4/0x260 kernel/task_work.c:233
exit_task_work include/linux/task_work.h:40 [inline]
do_exit+0x694/0x22f0 kernel/exit.c:971
do_group_exit+0x21c/0x2d0 kernel/exit.c:1112
__do_sys_exit_group kernel/exit.c:1123 [inline]
__se_sys_exit_group kernel/exit.c:1121 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1121
x64_sys_call+0x2210/0x2210 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xe8/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x44f639
Code: Unable to access opcode bytes at 0x44f60f.
RSP: 002b:00007ffc15c4e088 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 00000000004c32f0 RCX: 000000000044f639
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000001
RBP: 0000000000000001 R08: ffffffffffffffc0 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000004c32f0
R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
</TASK>
Since rescue mount options will mark the full fs read-only, there should
be no new transaction triggered.
But during unmount we will evict all inodes, which can trigger a new
transaction, and triggers warnings on a heavily corrupted fs.
[CAUSE]
Btrfs allows new transaction even on a read-only fs, this is to allow
log replay happen even on read-only mounts, just like what ext4/xfs do.
However with rescue mount options, the fs is fully read-only and cannot
be remounted read-write, thus in that case we should also reject any new
transactions.
[FIX]
If we find the fs has rescue mount options, we should treat the fs as
error, so that no new transaction can be started. |
| The Business Directory Plugin – Easy Listing Directories for WordPress plugin for WordPress is vulnerable to time-based SQL Injection via the 'payment' parameter in all versions up to, and including, 6.4.2 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix use-after-free in iscsit_dec_conn_usage_count()
In iscsit_dec_conn_usage_count(), the function calls complete() while
holding the conn->conn_usage_lock. As soon as complete() is invoked, the
waiter (such as iscsit_close_connection()) may wake up and proceed to free
the iscsit_conn structure.
If the waiter frees the memory before the current thread reaches
spin_unlock_bh(), it results in a KASAN slab-use-after-free as the function
attempts to release a lock within the already-freed connection structure.
Fix this by releasing the spinlock before calling complete(). |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: loongson-64bit: Fix incorrect NULL check after devm_kcalloc()
Fix incorrect NULL check in loongson_gpio_init_irqchip().
The function checks chip->parent instead of chip->irq.parents. |