| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
rtnetlink: fix error logic of IFLA_BRIDGE_FLAGS writing back
In the commit d73ef2d69c0d ("rtnetlink: let rtnl_bridge_setlink checks
IFLA_BRIDGE_MODE length"), an adjustment was made to the old loop logic
in the function `rtnl_bridge_setlink` to enable the loop to also check
the length of the IFLA_BRIDGE_MODE attribute. However, this adjustment
removed the `break` statement and led to an error logic of the flags
writing back at the end of this function.
if (have_flags)
memcpy(nla_data(attr), &flags, sizeof(flags));
// attr should point to IFLA_BRIDGE_FLAGS NLA !!!
Before the mentioned commit, the `attr` is granted to be IFLA_BRIDGE_FLAGS.
However, this is not necessarily true fow now as the updated loop will let
the attr point to the last NLA, even an invalid NLA which could cause
overflow writes.
This patch introduces a new variable `br_flag` to save the NLA pointer
that points to IFLA_BRIDGE_FLAGS and uses it to resolve the mentioned
error logic. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Fix handling of HCI_EV_IO_CAPA_REQUEST
If we received HCI_EV_IO_CAPA_REQUEST while
HCI_OP_READ_REMOTE_EXT_FEATURES is yet to be responded assume the remote
does support SSP since otherwise this event shouldn't be generated. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix corruption during on-line resize
We observed a corruption during on-line resize of a file system that is
larger than 16 TiB with 4k block size. With having more then 2^32 blocks
resize_inode is turned off by default by mke2fs. The issue can be
reproduced on a smaller file system for convenience by explicitly
turning off resize_inode. An on-line resize across an 8 GiB boundary (the
size of a meta block group in this setup) then leads to a corruption:
dev=/dev/<some_dev> # should be >= 16 GiB
mkdir -p /corruption
/sbin/mke2fs -t ext4 -b 4096 -O ^resize_inode $dev $((2 * 2**21 - 2**15))
mount -t ext4 $dev /corruption
dd if=/dev/zero bs=4096 of=/corruption/test count=$((2*2**21 - 4*2**15))
sha1sum /corruption/test
# 79d2658b39dcfd77274e435b0934028adafaab11 /corruption/test
/sbin/resize2fs $dev $((2*2**21))
# drop page cache to force reload the block from disk
echo 1 > /proc/sys/vm/drop_caches
sha1sum /corruption/test
# 3c2abc63cbf1a94c9e6977e0fbd72cd832c4d5c3 /corruption/test
2^21 = 2^15*2^6 equals 8 GiB whereof 2^15 is the number of blocks per
block group and 2^6 are the number of block groups that make a meta
block group.
The last checksum might be different depending on how the file is laid
out across the physical blocks. The actual corruption occurs at physical
block 63*2^15 = 2064384 which would be the location of the backup of the
meta block group's block descriptor. During the on-line resize the file
system will be converted to meta_bg starting at s_first_meta_bg which is
2 in the example - meaning all block groups after 16 GiB. However, in
ext4_flex_group_add we might add block groups that are not part of the
first meta block group yet. In the reproducer we achieved this by
substracting the size of a whole block group from the point where the
meta block group would start. This must be considered when updating the
backup block group descriptors to follow the non-meta_bg layout. The fix
is to add a test whether the group to add is already part of the meta
block group or not. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: fsl: qbman: Use raw spinlock for cgr_lock
smp_call_function always runs its callback in hard IRQ context, even on
PREEMPT_RT, where spinlocks can sleep. So we need to use a raw spinlock
for cgr_lock to ensure we aren't waiting on a sleeping task.
Although this bug has existed for a while, it was not apparent until
commit ef2a8d5478b9 ("net: dpaa: Adjust queue depth on rate change")
which invokes smp_call_function_single via qman_update_cgr_safe every
time a link goes up or down. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: udc: remove warning when queue disabled ep
It is possible trigger below warning message from mass storage function,
WARNING: CPU: 6 PID: 3839 at drivers/usb/gadget/udc/core.c:294 usb_ep_queue+0x7c/0x104
pc : usb_ep_queue+0x7c/0x104
lr : fsg_main_thread+0x494/0x1b3c
Root cause is mass storage function try to queue request from main thread,
but other thread may already disable ep when function disable.
As there is no function failure in the driver, in order to avoid effort
to fix warning, change WARN_ON_ONCE() in usb_ep_queue() to pr_debug(). |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: ncm: Fix handling of zero block length packets
While connecting to a Linux host with CDC_NCM_NTB_DEF_SIZE_TX
set to 65536, it has been observed that we receive short packets,
which come at interval of 5-10 seconds sometimes and have block
length zero but still contain 1-2 valid datagrams present.
According to the NCM spec:
"If wBlockLength = 0x0000, the block is terminated by a
short packet. In this case, the USB transfer must still
be shorter than dwNtbInMaxSize or dwNtbOutMaxSize. If
exactly dwNtbInMaxSize or dwNtbOutMaxSize bytes are sent,
and the size is a multiple of wMaxPacketSize for the
given pipe, then no ZLP shall be sent.
wBlockLength= 0x0000 must be used with extreme care, because
of the possibility that the host and device may get out of
sync, and because of test issues.
wBlockLength = 0x0000 allows the sender to reduce latency by
starting to send a very large NTB, and then shortening it when
the sender discovers that there’s not sufficient data to justify
sending a large NTB"
However, there is a potential issue with the current implementation,
as it checks for the occurrence of multiple NTBs in a single
giveback by verifying if the leftover bytes to be processed is zero
or not. If the block length reads zero, we would process the same
NTB infintely because the leftover bytes is never zero and it leads
to a crash. Fix this by bailing out if block length reads zero. |
| In the Linux kernel, the following vulnerability has been resolved:
media: tc358743: register v4l2 async device only after successful setup
Ensure the device has been setup correctly before registering the v4l2
async device, thus allowing userspace to access. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mvpp2: clear BM pool before initialization
Register value persist after booting the kernel using
kexec which results in kernel panic. Thus clear the
BM pool registers before initialisation to fix the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: prevent BUG_ON by blocking retries on failed device resumes
A cache device failing to resume due to mapping errors should not be
retried, as the failure leaves a partially initialized policy object.
Repeating the resume operation risks triggering BUG_ON when reloading
cache mappings into the incomplete policy object.
Reproduce steps:
1. create a cache metadata consisting of 512 or more cache blocks,
with some mappings stored in the first array block of the mapping
array. Here we use cache_restore v1.0 to build the metadata.
cat <<EOF >> cmeta.xml
<superblock uuid="" block_size="128" nr_cache_blocks="512" \
policy="smq" hint_width="4">
<mappings>
<mapping cache_block="0" origin_block="0" dirty="false"/>
</mappings>
</superblock>
EOF
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
cache_restore -i cmeta.xml -o /dev/mapper/cmeta --metadata-version=2
dmsetup remove cmeta
2. wipe the second array block of the mapping array to simulate
data degradations.
mapping_root=$(dd if=/dev/sdc bs=1c count=8 skip=192 \
2>/dev/null | hexdump -e '1/8 "%u\n"')
ablock=$(dd if=/dev/sdc bs=1c count=8 skip=$((4096*mapping_root+2056)) \
2>/dev/null | hexdump -e '1/8 "%u\n"')
dd if=/dev/zero of=/dev/sdc bs=4k count=1 seek=$ablock
3. try bringing up the cache device. The resume is expected to fail
due to the broken array block.
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dmsetup create cache --notable
dmsetup load cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
dmsetup resume cache
4. try resuming the cache again. An unexpected BUG_ON is triggered
while loading cache mappings.
dmsetup resume cache
Kernel logs:
(snip)
------------[ cut here ]------------
kernel BUG at drivers/md/dm-cache-policy-smq.c:752!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 332 Comm: dmsetup Not tainted 6.13.4 #3
RIP: 0010:smq_load_mapping+0x3e5/0x570
Fix by disallowing resume operations for devices that failed the
initial attempt. |
| In the Linux kernel, the following vulnerability has been resolved:
orangefs: Do not truncate file size
'len' is used to store the result of i_size_read(), so making 'len'
a size_t results in truncation to 4GiB on 32-bit systems. |
| In the Linux kernel, the following vulnerability has been resolved:
dm: fix unconditional IO throttle caused by REQ_PREFLUSH
When a bio with REQ_PREFLUSH is submitted to dm, __send_empty_flush()
generates a flush_bio with REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
which causes the flush_bio to be throttled by wbt_wait().
An example from v5.4, similar problem also exists in upstream:
crash> bt 2091206
PID: 2091206 TASK: ffff2050df92a300 CPU: 109 COMMAND: "kworker/u260:0"
#0 [ffff800084a2f7f0] __switch_to at ffff80004008aeb8
#1 [ffff800084a2f820] __schedule at ffff800040bfa0c4
#2 [ffff800084a2f880] schedule at ffff800040bfa4b4
#3 [ffff800084a2f8a0] io_schedule at ffff800040bfa9c4
#4 [ffff800084a2f8c0] rq_qos_wait at ffff8000405925bc
#5 [ffff800084a2f940] wbt_wait at ffff8000405bb3a0
#6 [ffff800084a2f9a0] __rq_qos_throttle at ffff800040592254
#7 [ffff800084a2f9c0] blk_mq_make_request at ffff80004057cf38
#8 [ffff800084a2fa60] generic_make_request at ffff800040570138
#9 [ffff800084a2fae0] submit_bio at ffff8000405703b4
#10 [ffff800084a2fb50] xlog_write_iclog at ffff800001280834 [xfs]
#11 [ffff800084a2fbb0] xlog_sync at ffff800001280c3c [xfs]
#12 [ffff800084a2fbf0] xlog_state_release_iclog at ffff800001280df4 [xfs]
#13 [ffff800084a2fc10] xlog_write at ffff80000128203c [xfs]
#14 [ffff800084a2fcd0] xlog_cil_push at ffff8000012846dc [xfs]
#15 [ffff800084a2fda0] xlog_cil_push_work at ffff800001284a2c [xfs]
#16 [ffff800084a2fdb0] process_one_work at ffff800040111d08
#17 [ffff800084a2fe00] worker_thread at ffff8000401121cc
#18 [ffff800084a2fe70] kthread at ffff800040118de4
After commit 2def2845cc33 ("xfs: don't allow log IO to be throttled"),
the metadata submitted by xlog_write_iclog() should not be throttled.
But due to the existence of the dm layer, throttling flush_bio indirectly
causes the metadata bio to be throttled.
Fix this by conditionally adding REQ_IDLE to flush_bio.bi_opf, which makes
wbt_should_throttle() return false to avoid wbt_wait(). |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: hfsc: Address reentrant enqueue adding class to eltree twice
Savino says:
"We are writing to report that this recent patch
(141d34391abbb315d68556b7c67ad97885407547) [1]
can be bypassed, and a UAF can still occur when HFSC is utilized with
NETEM.
The patch only checks the cl->cl_nactive field to determine whether
it is the first insertion or not [2], but this field is only
incremented by init_vf [3].
By using HFSC_RSC (which uses init_ed) [4], it is possible to bypass the
check and insert the class twice in the eltree.
Under normal conditions, this would lead to an infinite loop in
hfsc_dequeue for the reasons we already explained in this report [5].
However, if TBF is added as root qdisc and it is configured with a
very low rate,
it can be utilized to prevent packets from being dequeued.
This behavior can be exploited to perform subsequent insertions in the
HFSC eltree and cause a UAF."
To fix both the UAF and the infinite loop, with netem as an hfsc child,
check explicitly in hfsc_enqueue whether the class is already in the eltree
whenever the HFSC_RSC flag is set.
[1] https://web.git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=141d34391abbb315d68556b7c67ad97885407547
[2] https://elixir.bootlin.com/linux/v6.15-rc5/source/net/sched/sch_hfsc.c#L1572
[3] https://elixir.bootlin.com/linux/v6.15-rc5/source/net/sched/sch_hfsc.c#L677
[4] https://elixir.bootlin.com/linux/v6.15-rc5/source/net/sched/sch_hfsc.c#L1574
[5] https://lore.kernel.org/netdev/8DuRWwfqjoRDLDmBMlIfbrsZg9Gx50DHJc1ilxsEBNe2D6NMoigR_eIRIG0LOjMc3r10nUUZtArXx4oZBIdUfZQrwjcQhdinnMis_0G7VEk=@willsroot.io/T/#u |
| In the Linux kernel, the following vulnerability has been resolved:
vhost-scsi: protect vq->log_used with vq->mutex
The vhost-scsi completion path may access vq->log_base when vq->log_used is
already set to false.
vhost-thread QEMU-thread
vhost_scsi_complete_cmd_work()
-> vhost_add_used()
-> vhost_add_used_n()
if (unlikely(vq->log_used))
QEMU disables vq->log_used
via VHOST_SET_VRING_ADDR.
mutex_lock(&vq->mutex);
vq->log_used = false now!
mutex_unlock(&vq->mutex);
QEMU gfree(vq->log_base)
log_used()
-> log_write(vq->log_base)
Assuming the VMM is QEMU. The vq->log_base is from QEMU userpace and can be
reclaimed via gfree(). As a result, this causes invalid memory writes to
QEMU userspace.
The control queue path has the same issue. |
| In the Linux kernel, the following vulnerability has been resolved:
libnvdimm/labels: Fix divide error in nd_label_data_init()
If a faulty CXL memory device returns a broken zero LSA size in its
memory device information (Identify Memory Device (Opcode 4000h), CXL
spec. 3.1, 8.2.9.9.1.1), a divide error occurs in the libnvdimm
driver:
Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:nd_label_data_init+0x10e/0x800 [libnvdimm]
Code and flow:
1) CXL Command 4000h returns LSA size = 0
2) config_size is assigned to zero LSA size (CXL pmem driver):
drivers/cxl/pmem.c: .config_size = mds->lsa_size,
3) max_xfer is set to zero (nvdimm driver):
drivers/nvdimm/label.c: max_xfer = min_t(size_t, ndd->nsarea.max_xfer, config_size);
4) A subsequent DIV_ROUND_UP() causes a division by zero:
drivers/nvdimm/label.c: /* Make our initial read size a multiple of max_xfer size */
drivers/nvdimm/label.c: read_size = min(DIV_ROUND_UP(read_size, max_xfer) * max_xfer,
drivers/nvdimm/label.c- config_size);
Fix this by checking the config size parameter by extending an
existing check. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm: Check return value from memblock_phys_alloc_range()
At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of
contiguous free memory available at this point, the kernel will crash
and burn because memblock_phys_alloc_range() returns 0 on failure,
which leads memblock_phys_free() to throw the first 4 MiB of physical
memory to the wolves.
At a minimum it should fail gracefully with a meaningful diagnostic,
but in fact everything seems to work fine without the weird reserve
allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: lzo - Fix compression buffer overrun
Unlike the decompression code, the compression code in LZO never
checked for output overruns. It instead assumes that the caller
always provides enough buffer space, disregarding the buffer length
provided by the caller.
Add a safe compression interface that checks for the end of buffer
before each write. Use the safe interface in crypto/lzo. |
| In the Linux kernel, the following vulnerability has been resolved:
rseq: Fix segfault on registration when rseq_cs is non-zero
The rseq_cs field is documented as being set to 0 by user-space prior to
registration, however this is not currently enforced by the kernel. This
can result in a segfault on return to user-space if the value stored in
the rseq_cs field doesn't point to a valid struct rseq_cs.
The correct solution to this would be to fail the rseq registration when
the rseq_cs field is non-zero. However, some older versions of glibc
will reuse the rseq area of previous threads without clearing the
rseq_cs field and will also terminate the process if the rseq
registration fails in a secondary thread. This wasn't caught in testing
because in this case the leftover rseq_cs does point to a valid struct
rseq_cs.
What we can do is clear the rseq_cs field on registration when it's
non-zero which will prevent segfaults on registration and won't break
the glibc versions that reuse rseq areas on thread creation. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_set_pipapo_avx2: fix initial map fill
If the first field doesn't cover the entire start map, then we must zero
out the remainder, else we leak those bits into the next match round map.
The early fix was incomplete and did only fix up the generic C
implementation.
A followup patch adds a test case to nft_concat_range.sh. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix UAF on mgmt_remove_adv_monitor_complete
This reworks MGMT_OP_REMOVE_ADV_MONITOR to not use mgmt_pending_add to
avoid crashes like bellow:
==================================================================
BUG: KASAN: slab-use-after-free in mgmt_remove_adv_monitor_complete+0xe5/0x540 net/bluetooth/mgmt.c:5406
Read of size 8 at addr ffff88801c53f318 by task kworker/u5:5/5341
CPU: 0 UID: 0 PID: 5341 Comm: kworker/u5:5 Not tainted 6.15.0-syzkaller-10402-g4cb6c8af8591 #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xd2/0x2b0 mm/kasan/report.c:521
kasan_report+0x118/0x150 mm/kasan/report.c:634
mgmt_remove_adv_monitor_complete+0xe5/0x540 net/bluetooth/mgmt.c:5406
hci_cmd_sync_work+0x261/0x3a0 net/bluetooth/hci_sync.c:334
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x711/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 5987:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4358
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
mgmt_pending_new+0x65/0x240 net/bluetooth/mgmt_util.c:252
mgmt_pending_add+0x34/0x120 net/bluetooth/mgmt_util.c:279
remove_adv_monitor+0x103/0x1b0 net/bluetooth/mgmt.c:5454
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x219/0x270 net/socket.c:727
sock_write_iter+0x258/0x330 net/socket.c:1131
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x548/0xa90 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 5989:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2380 [inline]
slab_free mm/slub.c:4642 [inline]
kfree+0x18e/0x440 mm/slub.c:4841
mgmt_pending_foreach+0xc9/0x120 net/bluetooth/mgmt_util.c:242
mgmt_index_removed+0x10d/0x2f0 net/bluetooth/mgmt.c:9366
hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314
__sys_bind_socket net/socket.c:1810 [inline]
__sys_bind+0x2c3/0x3e0 net/socket.c:1841
__do_sys_bind net/socket.c:1846 [inline]
__se_sys_bind net/socket.c:1844 [inline]
__x64_sys_bind+0x7a/0x90 net/socket.c:1844
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: CPPC: Fix NULL pointer dereference when nosmp is used
With nosmp in cmdline, other CPUs are not brought up, leaving
their cpc_desc_ptr NULL. CPU0's iteration via for_each_possible_cpu()
dereferences these NULL pointers, causing panic.
Panic backtrace:
[ 0.401123] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000b8
...
[ 0.403255] [<ffffffff809a5818>] cppc_allow_fast_switch+0x6a/0xd4
...
Kernel panic - not syncing: Attempted to kill init!
[ rjw: New subject ] |