| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: avoid pool UAF
An UAF issue was observed:
BUG: KASAN: slab-use-after-free in page_counter_uncharge+0x65/0x150
Write of size 8 at addr ffff888106715440 by task insmod/527
CPU: 4 UID: 0 PID: 527 Comm: insmod 6.19.0-rc7-next-20260129+ #11
Tainted: [O]=OOT_MODULE
Call Trace:
<TASK>
dump_stack_lvl+0x82/0xd0
kasan_report+0xca/0x100
kasan_check_range+0x39/0x1c0
page_counter_uncharge+0x65/0x150
dmem_cgroup_uncharge+0x1f/0x260
Allocated by task 527:
Freed by task 0:
The buggy address belongs to the object at ffff888106715400
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 64 bytes inside of
freed 512-byte region [ffff888106715400, ffff888106715600)
The buggy address belongs to the physical page:
Memory state around the buggy address:
ffff888106715300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888106715380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888106715400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888106715480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888106715500: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
The issue occurs because a pool can still be held by a caller after its
associated memory region is unregistered. The current implementation frees
the pool even if users still hold references to it (e.g., before uncharge
operations complete).
This patch adds a reference counter to each pool, ensuring that a pool is
only freed when its reference count drops to zero. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: Intel-thc-hid: Intel-thc: Add safety check for reading DMA buffer
Add DMA buffer readiness check before reading DMA buffer to avoid
unexpected NULL pointer accessing. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: imx: preserve error state in block data length handler
When a block read returns an invalid length, zero or >I2C_SMBUS_BLOCK_MAX,
the length handler sets the state to IMX_I2C_STATE_FAILED. However,
i2c_imx_master_isr() unconditionally overwrites this with
IMX_I2C_STATE_READ_CONTINUE, causing an endless read loop that overruns
buffers and crashes the system.
Guard the state transition to preserve error states set by the length
handler. |
| In the Linux kernel, the following vulnerability has been resolved:
procfs: avoid fetching build ID while holding VMA lock
Fix PROCMAP_QUERY to fetch optional build ID only after dropping mmap_lock
or per-VMA lock, whichever was used to lock VMA under question, to avoid
deadlock reported by syzbot:
-> #1 (&mm->mmap_lock){++++}-{4:4}:
__might_fault+0xed/0x170
_copy_to_iter+0x118/0x1720
copy_page_to_iter+0x12d/0x1e0
filemap_read+0x720/0x10a0
blkdev_read_iter+0x2b5/0x4e0
vfs_read+0x7f4/0xae0
ksys_read+0x12a/0x250
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (&sb->s_type->i_mutex_key#8){++++}-{4:4}:
__lock_acquire+0x1509/0x26d0
lock_acquire+0x185/0x340
down_read+0x98/0x490
blkdev_read_iter+0x2a7/0x4e0
__kernel_read+0x39a/0xa90
freader_fetch+0x1d5/0xa80
__build_id_parse.isra.0+0xea/0x6a0
do_procmap_query+0xd75/0x1050
procfs_procmap_ioctl+0x7a/0xb0
__x64_sys_ioctl+0x18e/0x210
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
rlock(&mm->mmap_lock);
lock(&sb->s_type->i_mutex_key#8);
lock(&mm->mmap_lock);
rlock(&sb->s_type->i_mutex_key#8);
*** DEADLOCK ***
This seems to be exacerbated (as we haven't seen these syzbot reports
before that) by the recent:
777a8560fd29 ("lib/buildid: use __kernel_read() for sleepable context")
To make this safe, we need to grab file refcount while VMA is still locked, but
other than that everything is pretty straightforward. Internal build_id_parse()
API assumes VMA is passed, but it only needs the underlying file reference, so
just add another variant build_id_parse_file() that expects file passed
directly.
[akpm@linux-foundation.org: fix up kerneldoc] |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix oops due to invalid pointer for kfree() in parse_longname()
This fixes a kernel oops when reading ceph snapshot directories (.snap),
for example by simply running `ls /mnt/my_ceph/.snap`.
The variable str is guarded by __free(kfree), but advanced by one for
skipping the initial '_' in snapshot names. Thus, kfree() is called
with an invalid pointer. This patch removes the need for advancing the
pointer so kfree() is called with correct memory pointer.
Steps to reproduce:
1. Create snapshots on a cephfs volume (I've 63 snaps in my testcase)
2. Add cephfs mount to fstab
$ echo "samba-fileserver@.files=/volumes/datapool/stuff/3461082b-ecc9-4e82-8549-3fd2590d3fb6 /mnt/test/stuff ceph acl,noatime,_netdev 0 0" >> /etc/fstab
3. Reboot the system
$ systemctl reboot
4. Check if it's really mounted
$ mount | grep stuff
5. List snapshots (expected 63 snapshots on my system)
$ ls /mnt/test/stuff/.snap
Now ls hangs forever and the kernel log shows the oops. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer in tegra_qspi_combined_seq_xfer
The curr_xfer field is read by the IRQ handler without holding the lock
to check if a transfer is in progress. When clearing curr_xfer in the
combined sequence transfer loop, protect it with the spinlock to prevent
a race with the interrupt handler.
Protect the curr_xfer clearing at the exit path of
tegra_qspi_combined_seq_xfer() with the spinlock to prevent a race
with the interrupt handler that reads this field.
Without this protection, the IRQ handler could read a partially updated
curr_xfer value, leading to NULL pointer dereference or use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
net: cpsw_new: Execute ndo_set_rx_mode callback in a work queue
Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this
change triggered the following call trace on my BeagleBone Black board:
WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/496
RTNL: assertion failed at net/8021q/vlan_core.c (236)
Modules linked in:
CPU: 0 UID: 997 PID: 496 Comm: rpcbind Not tainted 6.19.0-rc6-next-20260122-yocto-standard+ #8 PREEMPT
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x28/0x2c
show_stack from dump_stack_lvl+0x30/0x38
dump_stack_lvl from __warn+0xb8/0x11c
__warn from warn_slowpath_fmt+0x130/0x194
warn_slowpath_fmt from vlan_for_each+0x120/0x124
vlan_for_each from cpsw_add_mc_addr+0x54/0xd8
cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec
__hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88
__dev_mc_add from igmp6_group_added+0x84/0xec
igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0
__ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4
__ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168
do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8
ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c
do_sock_setsockopt from __sys_setsockopt+0x84/0xac
__sys_setsockopt from ret_fast_syscall+0x0/0x5
This trace occurs because vlan_for_each() is called within
cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held.
Since modifying vlan_for_each() to operate without the RTNL lock is not
straightforward, and because ndo_set_rx_mode() is invoked both with and
without the RTNL lock across different code paths, simply adding
rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution.
To resolve this issue, we opt to execute the actual processing within
a work queue, following the approach used by the icssg-prueth driver. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: cls_u32: use skb_header_pointer_careful()
skb_header_pointer() does not fully validate negative @offset values.
Use skb_header_pointer_careful() instead.
GangMin Kim provided a report and a repro fooling u32_classify():
BUG: KASAN: slab-out-of-bounds in u32_classify+0x1180/0x11b0
net/sched/cls_u32.c:221 |
| In the Linux kernel, the following vulnerability has been resolved:
dpaa2-switch: prevent ZERO_SIZE_PTR dereference when num_ifs is zero
The driver allocates arrays for ports, FDBs, and filter blocks using
kcalloc() with ethsw->sw_attr.num_ifs as the element count. When the
device reports zero interfaces (either due to hardware configuration
or firmware issues), kcalloc(0, ...) returns ZERO_SIZE_PTR (0x10)
instead of NULL.
Later in dpaa2_switch_probe(), the NAPI initialization unconditionally
accesses ethsw->ports[0]->netdev, which attempts to dereference
ZERO_SIZE_PTR (address 0x10), resulting in a kernel panic.
Add a check to ensure num_ifs is greater than zero after retrieving
device attributes. This prevents the zero-sized allocations and
subsequent invalid pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Prevent excessive number of frames
In this case, the user constructed the parameters with maxpacksize 40
for rate 22050 / pps 1000, and packsize[0] 22 packsize[1] 23. The buffer
size for each data URB is maxpacksize * packets, which in this example
is 40 * 6 = 240; When the user performs a write operation to send audio
data into the ALSA PCM playback stream, the calculated number of frames
is packsize[0] * packets = 264, which exceeds the allocated URB buffer
size, triggering the out-of-bounds (OOB) issue reported by syzbot [1].
Added a check for the number of single data URB frames when calculating
the number of frames to prevent [1].
[1]
BUG: KASAN: slab-out-of-bounds in copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
Write of size 264 at addr ffff88804337e800 by task syz.0.17/5506
Call Trace:
copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
prepare_playback_urb+0x953/0x13d0 sound/usb/pcm.c:1611
prepare_outbound_urb+0x377/0xc50 sound/usb/endpoint.c:333 |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix error recovery in macvlan_common_newlink()
valis provided a nice repro to crash the kernel:
ip link add p1 type veth peer p2
ip link set address 00:00:00:00:00:20 dev p1
ip link set up dev p1
ip link set up dev p2
ip link add mv0 link p2 type macvlan mode source
ip link add invalid% link p2 type macvlan mode source macaddr add 00:00:00:00:00:20
ping -c1 -I p1 1.2.3.4
He also gave a very detailed analysis:
<quote valis>
The issue is triggered when a new macvlan link is created with
MACVLAN_MODE_SOURCE mode and MACVLAN_MACADDR_ADD (or
MACVLAN_MACADDR_SET) parameter, lower device already has a macvlan
port and register_netdevice() called from macvlan_common_newlink()
fails (e.g. because of the invalid link name).
In this case macvlan_hash_add_source is called from
macvlan_change_sources() / macvlan_common_newlink():
This adds a reference to vlan to the port's vlan_source_hash using
macvlan_source_entry.
vlan is a pointer to the priv data of the link that is being created.
When register_netdevice() fails, the error is returned from
macvlan_newlink() to rtnl_newlink_create():
if (ops->newlink)
err = ops->newlink(dev, ¶ms, extack);
else
err = register_netdevice(dev);
if (err < 0) {
free_netdev(dev);
goto out;
}
and free_netdev() is called, causing a kvfree() on the struct
net_device that is still referenced in the source entry attached to
the lower device's macvlan port.
Now all packets sent on the macvlan port with a matching source mac
address will trigger a use-after-free in macvlan_forward_source().
</quote valis>
With all that, my fix is to make sure we call macvlan_flush_sources()
regardless of @create value whenever "goto destroy_macvlan_port;"
path is taken.
Many thanks to valis for following up on this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix PTP NULL pointer dereference during VSI rebuild
Fix race condition where PTP periodic work runs while VSI is being
rebuilt, accessing NULL vsi->rx_rings.
The sequence was:
1. ice_ptp_prepare_for_reset() cancels PTP work
2. ice_ptp_rebuild() immediately queues PTP work
3. VSI rebuild happens AFTER ice_ptp_rebuild()
4. PTP work runs and accesses NULL vsi->rx_rings
Fix: Keep PTP work cancelled during rebuild, only queue it after
VSI rebuild completes in ice_rebuild().
Added ice_ptp_queue_work() helper function to encapsulate the logic
for queuing PTP work, ensuring it's only queued when PTP is supported
and the state is ICE_PTP_READY.
Error log:
[ 121.392544] ice 0000:60:00.1: PTP reset successful
[ 121.392692] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 121.392712] #PF: supervisor read access in kernel mode
[ 121.392720] #PF: error_code(0x0000) - not-present page
[ 121.392727] PGD 0
[ 121.392734] Oops: Oops: 0000 [#1] SMP NOPTI
[ 121.392746] CPU: 8 UID: 0 PID: 1005 Comm: ice-ptp-0000:60 Tainted: G S 6.19.0-rc6+ #4 PREEMPT(voluntary)
[ 121.392761] Tainted: [S]=CPU_OUT_OF_SPEC
[ 121.392773] RIP: 0010:ice_ptp_update_cached_phctime+0xbf/0x150 [ice]
[ 121.393042] Call Trace:
[ 121.393047] <TASK>
[ 121.393055] ice_ptp_periodic_work+0x69/0x180 [ice]
[ 121.393202] kthread_worker_fn+0xa2/0x260
[ 121.393216] ? __pfx_ice_ptp_periodic_work+0x10/0x10 [ice]
[ 121.393359] ? __pfx_kthread_worker_fn+0x10/0x10
[ 121.393371] kthread+0x10d/0x230
[ 121.393382] ? __pfx_kthread+0x10/0x10
[ 121.393393] ret_from_fork+0x273/0x2b0
[ 121.393407] ? __pfx_kthread+0x10/0x10
[ 121.393417] ret_from_fork_asm+0x1a/0x30
[ 121.393432] </TASK> |
| Glory RBG-100 recycler systems using the ISPK-08 software component contain hard-coded operating system credentials that allow remote authentication to the underlying Linux system. Multiple local user accounts, including accounts with administrative privileges, were found to have fixed, embedded passwords. An attacker with network access to exposed services such as SSH may authenticate using these credentials and gain unauthorized access to the system. Successful exploitation allows remote access with elevated privileges and may result in full system compromise. |
| Dell Unisphere for PowerMax vApp, version(s) 9.2.4.x, contain(s) an Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability. A low privileged attacker with remote access could potentially exploit this vulnerability, leading to the execution of malicious HTML or JavaScript code in a victim user's web browser in the context of the vulnerable web application. Exploitation may lead to information disclosure, session theft, or client-side request forgery. |
| Emails sent by pretix can utilize placeholders that will be filled with customer data. For example, when {name}
is used in an email template, it will be replaced with the buyer's
name for the final email. This mechanism contained two security-relevant
bugs:
*
It was possible to exfiltrate information about the pretix system through specially crafted placeholder names such as {{event.__init__.__code__.co_filename}}.
This way, an attacker with the ability to control email templates
(usually every user of the pretix backend) could retrieve sensitive
information from the system configuration, including even database
passwords or API keys. pretix does include mechanisms to prevent the usage of such
malicious placeholders, however due to a mistake in the code, they were
not fully effective for the email subject.
*
Placeholders in subjects and plain text bodies of emails were
wrongfully evaluated twice. Therefore, if the first evaluation of a
placeholder again contains a placeholder, this second placeholder was
rendered. This allows the rendering of placeholders controlled by the
ticket buyer, and therefore the exploitation of the first issue as a
ticket buyer. Luckily, the only buyer-controlled placeholder available
in pretix by default (that is not validated in a way that prevents the
issue) is {invoice_company}, which is very unusual (but not
impossible) to be contained in an email subject template. In addition
to broadening the attack surface of the first issue, this could
theoretically also leak information about an order to one of the
attendees within that order. However, we also consider this scenario
very unlikely under typical conditions.
Out of caution, we recommend that you rotate all passwords and API keys contained in your pretix.cfg https://docs.pretix.eu/self-hosting/config/ file. |
| Concierge::Sessions versions from 0.8.1 before 0.8.5 for Perl generate insecure session ids. The generate_session_id function in Concierge::Sessions::Base defaults to using the uuidgen command to generate a UUID, with a fallback to using Perl's built-in rand function. Neither of these methods are secure, and attackers are able to guess session_ids that can grant them access to systems. Specifically,
* There is no warning when uuidgen fails. The software can be quietly using the fallback rand() function with no warnings if the command fails for any reason.
* The uuidgen command will generate a time-based UUID if the system does not have a high-quality random number source, because the call does not explicitly specify the --random option. Note that the system time is shared in HTTP responses.
* UUIDs are identifiers whose mere possession grants access, as per RFC 9562.
* The output of the built-in rand() function is predictable and unsuitable for security applications. |
| Heap buffer overflow in libvpx. This vulnerability affects Firefox < 147.0.4, Firefox ESR < 140.7.1, Firefox ESR < 115.32.1, Thunderbird < 140.7.2, and Thunderbird < 147.0.2. |
| Emails sent by pretix can utilize placeholders that will be filled with customer data. For example, when {name}
is used in an email template, it will be replaced with the buyer's
name for the final email. This mechanism contained a security-relevant bug:
It was possible to exfiltrate information about the pretix system through specially crafted placeholder names such as {{event.__init__.__code__.co_filename}}.
This way, an attacker with the ability to control email templates
(usually every user of the pretix backend) could retrieve sensitive
information from the system configuration, including even database
passwords or API keys. pretix does include mechanisms to prevent the usage of such
malicious placeholders, however due to a mistake in the code, they were
not fully effective for this plugin.
Out of caution, we recommend that you rotate all passwords and API keys contained in your pretix.cfg file. |
| Emails sent by pretix can utilize placeholders that will be filled with customer data. For example, when {name}
is used in an email template, it will be replaced with the buyer's
name for the final email. This mechanism contained a security-relevant bug:
It was possible to exfiltrate information about the pretix system through specially crafted placeholder names such as {{event.__init__.__code__.co_filename}}.
This way, an attacker with the ability to control email templates
(usually every user of the pretix backend) could retrieve sensitive
information from the system configuration, including even database
passwords or API keys. pretix does include mechanisms to prevent the usage of such
malicious placeholders, however due to a mistake in the code, they were
not fully effective for this plugin.
Out of caution, we recommend that you rotate all passwords and API keys contained in your pretix.cfg https://docs.pretix.eu/self-hosting/config/ file. |
| eNet SMART HOME server 2.2.1 and 2.3.1 contains a missing authorization vulnerability in the deleteUserAccount JSON-RPC method that permits any authenticated low-privileged user (UG_USER) to delete arbitrary user accounts, except for the built-in admin account. The application does not enforce role-based access control on this function, allowing a standard user to submit a crafted POST request to /jsonrpc/management specifying another username to have that account removed without elevated permissions or additional confirmation. |