| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
phy: qcom-qusb2: Fix NULL pointer dereference on early suspend
Enabling runtime PM before attaching the QPHY instance as driver data
can lead to a NULL pointer dereference in runtime PM callbacks that
expect valid driver data. There is a small window where the suspend
callback may run after PM runtime enabling and before runtime forbid.
This causes a sporadic crash during boot:
```
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a1
[...]
CPU: 0 UID: 0 PID: 11 Comm: kworker/0:1 Not tainted 6.16.7+ #116 PREEMPT
Workqueue: pm pm_runtime_work
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : qusb2_phy_runtime_suspend+0x14/0x1e0 [phy_qcom_qusb2]
lr : pm_generic_runtime_suspend+0x2c/0x44
[...]
```
Attach the QPHY instance as driver data before enabling runtime PM to
prevent NULL pointer dereference in runtime PM callbacks.
Reorder pm_runtime_enable() and pm_runtime_forbid() to prevent a
short window where an unnecessary runtime suspend can occur.
Use the devres-managed version to ensure PM runtime is symmetrically
disabled during driver removal for proper cleanup. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock in wait_current_trans() due to ignored transaction type
When wait_current_trans() is called during start_transaction(), it
currently waits for a blocked transaction without considering whether
the given transaction type actually needs to wait for that particular
transaction state. The btrfs_blocked_trans_types[] array already defines
which transaction types should wait for which transaction states, but
this check was missing in wait_current_trans().
This can lead to a deadlock scenario involving two transactions and
pending ordered extents:
1. Transaction A is in TRANS_STATE_COMMIT_DOING state
2. A worker processing an ordered extent calls start_transaction()
with TRANS_JOIN
3. join_transaction() returns -EBUSY because Transaction A is in
TRANS_STATE_COMMIT_DOING
4. Transaction A moves to TRANS_STATE_UNBLOCKED and completes
5. A new Transaction B is created (TRANS_STATE_RUNNING)
6. The ordered extent from step 2 is added to Transaction B's
pending ordered extents
7. Transaction B immediately starts commit by another task and
enters TRANS_STATE_COMMIT_START
8. The worker finally reaches wait_current_trans(), sees Transaction B
in TRANS_STATE_COMMIT_START (a blocked state), and waits
unconditionally
9. However, TRANS_JOIN should NOT wait for TRANS_STATE_COMMIT_START
according to btrfs_blocked_trans_types[]
10. Transaction B is waiting for pending ordered extents to complete
11. Deadlock: Transaction B waits for ordered extent, ordered extent
waits for Transaction B
This can be illustrated by the following call stacks:
CPU0 CPU1
btrfs_finish_ordered_io()
start_transaction(TRANS_JOIN)
join_transaction()
# -EBUSY (Transaction A is
# TRANS_STATE_COMMIT_DOING)
# Transaction A completes
# Transaction B created
# ordered extent added to
# Transaction B's pending list
btrfs_commit_transaction()
# Transaction B enters
# TRANS_STATE_COMMIT_START
# waiting for pending ordered
# extents
wait_current_trans()
# waits for Transaction B
# (should not wait!)
Task bstore_kv_sync in btrfs_commit_transaction waiting for ordered
extents:
__schedule+0x2e7/0x8a0
schedule+0x64/0xe0
btrfs_commit_transaction+0xbf7/0xda0 [btrfs]
btrfs_sync_file+0x342/0x4d0 [btrfs]
__x64_sys_fdatasync+0x4b/0x80
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Task kworker in wait_current_trans waiting for transaction commit:
Workqueue: btrfs-syno_nocow btrfs_work_helper [btrfs]
__schedule+0x2e7/0x8a0
schedule+0x64/0xe0
wait_current_trans+0xb0/0x110 [btrfs]
start_transaction+0x346/0x5b0 [btrfs]
btrfs_finish_ordered_io.isra.0+0x49b/0x9c0 [btrfs]
btrfs_work_helper+0xe8/0x350 [btrfs]
process_one_work+0x1d3/0x3c0
worker_thread+0x4d/0x3e0
kthread+0x12d/0x150
ret_from_fork+0x1f/0x30
Fix this by passing the transaction type to wait_current_trans() and
checking btrfs_blocked_trans_types[cur_trans->state] against the given
type before deciding to wait. This ensures that transaction types which
are allowed to join during certain blocked states will not unnecessarily
wait and cause deadlocks. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: xilinx: xdma: Fix regmap max_register
The max_register field is assigned the size of the register memory
region instead of the offset of the last register.
The result is that reading from the regmap via debugfs can cause
a segmentation fault:
tail /sys/kernel/debug/regmap/xdma.1.auto/registers
Unable to handle kernel paging request at virtual address ffff800082f70000
Mem abort info:
ESR = 0x0000000096000007
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x07: level 3 translation fault
[...]
Call trace:
regmap_mmio_read32le+0x10/0x30
_regmap_bus_reg_read+0x74/0xc0
_regmap_read+0x68/0x198
regmap_read+0x54/0x88
regmap_read_debugfs+0x140/0x380
regmap_map_read_file+0x30/0x48
full_proxy_read+0x68/0xc8
vfs_read+0xcc/0x310
ksys_read+0x7c/0x120
__arm64_sys_read+0x24/0x40
invoke_syscall.constprop.0+0x64/0x108
do_el0_svc+0xb0/0xd8
el0_svc+0x38/0x130
el0t_64_sync_handler+0x120/0x138
el0t_64_sync+0x194/0x198
Code: aa1e03e9 d503201f f9400000 8b214000 (b9400000)
---[ end trace 0000000000000000 ]---
note: tail[1217] exited with irqs disabled
note: tail[1217] exited with preempt_count 1
Segmentation fault |
| In the Linux kernel, the following vulnerability has been resolved:
w1: therm: Fix off-by-one buffer overflow in alarms_store
The sysfs buffer passed to alarms_store() is allocated with 'size + 1'
bytes and a NUL terminator is appended. However, the 'size' argument
does not account for this extra byte. The original code then allocated
'size' bytes and used strcpy() to copy 'buf', which always writes one
byte past the allocated buffer since strcpy() copies until the NUL
terminator at index 'size'.
Fix this by parsing the 'buf' parameter directly using simple_strtoll()
without allocating any intermediate memory or string copying. This
removes the overflow while simplifying the code. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: at91-sama5d2_adc: Fix potential use-after-free in sama5d2_adc driver
at91_adc_interrupt can call at91_adc_touch_data_handler function
to start the work by schedule_work(&st->touch_st.workq).
If we remove the module which will call at91_adc_remove to
make cleanup, it will free indio_dev through iio_device_unregister but
quite a bit later. While the work mentioned above will be used. The
sequence of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| at91_adc_workq_handler
at91_adc_remove |
iio_device_unregister(indio_dev) |
//free indio_dev a bit later |
| iio_push_to_buffers(indio_dev)
| //use indio_dev
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in at91_adc_remove. |
| A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can cause a Stack-Based Buffer Overflow vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: imu: st_lsm6dsx: fix iio_chan_spec for sensors without event detection
The st_lsm6dsx_acc_channels array of struct iio_chan_spec has a non-NULL
event_spec field, indicating support for IIO events. However, event
detection is not supported for all sensors, and if userspace tries to
configure accelerometer wakeup events on a sensor device that does not
support them (e.g. LSM6DS0), st_lsm6dsx_write_event() dereferences a NULL
pointer when trying to write to the wakeup register.
Define an additional struct iio_chan_spec array whose members have a NULL
event_spec field, and use this array instead of st_lsm6dsx_acc_channels for
sensors without event detection capability. |
| A vulnerability in the Dynamic Vectoring and Streaming (DVS) Engine implementation of Cisco AsyncOS Software for Cisco Secure Web Appliance could allow an unauthenticated, remote attacker to bypass the anti-malware scanner, allowing malicious archive files to be downloaded.
This vulnerability is due to improper handling of certain archive files. An attacker could exploit this vulnerability by sending a crafted archive file, which should be blocked, through an affected device. A successful exploit could allow the attacker to bypass the anti-malware scanner and download malware onto an end user workstation. The downloaded malware will not automatically execute unless the end user extracts and launches the malicious file. |
| A vulnerability in the Certificate Management feature of Cisco Meeting Management could allow an authenticated, remote attacker to upload arbitrary files, execute arbitrary commands, and elevate privileges to root on an affected system.
This vulnerability is due to improper input validation in certain sections of the web-based management interface. An attacker could exploit this vulnerability by sending a crafted HTTP request to an affected system. A successful exploit could allow the attacker to upload arbitrary files to the affected system. The malicious files could overwrite system files that are processed by the root system account and allow arbitrary command execution with root privileges. To exploit this vulnerability, the attacker must have valid credentials for a user account with at least the role of video operator. |
| n8n is an open source workflow automation platform. From version 1.65.0 to before 1.114.3, the use of Buffer.allocUnsafe() and Buffer.allocUnsafeSlow() in the task runner allowed untrusted code to allocate uninitialized memory. Such uninitialized buffers could contain residual data from within the same Node.js process (for example, data from prior requests, tasks, secrets, or tokens), resulting in potential information disclosure. This issue has been patched in version 1.114.3. |
| Improper handling of insufficient permission or privileges in ClipboardService prior to SMR Apr-2025 Release 1 allows local attackers to access image files across multiple users. User interaction is required for triggering this vulnerability. |
| IBM Jazz Reporting Service could allow an authenticated user on the host network to cause a denial of service using specially crafted SQL query that consumes excess memory resources. |
| The ShortPixel Image Optimizer plugin for WordPress is vulnerable to Arbitrary File Read via path traversal in the 'loadFile' parameter in all versions up to, and including, 6.4.2 due to insufficient path validation and sanitization in the 'loadLogFile' AJAX action. This makes it possible for authenticated attackers, with Editor-level access and above, to read the contents of arbitrary files on the server, which can contain sensitive information such as database credentials and authentication keys. |
| The ProfileGrid – User Profiles, Groups and Communities plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 5.9.7.2 via the 'pm_upload_image' and 'pm_upload_cover_image' AJAX actions. This is due to the update_user_meta() function being called outside of the user authorization check in public/partials/crop.php and public/partials/coverimg_crop.php. This makes it possible for authenticated attackers, with Subscriber-level access and above, to change any user's profile picture or cover image, including administrators. |
| The All In One Image Viewer Block plugin for WordPress is vulnerable to Server-Side Request Forgery in all versions up to, and including, 1.0.2 due to missing authorization and URL validation on the image-proxy REST API endpoint. This makes it possible for unauthenticated attackers to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services. |
| Path Traversal vulnerability in Digitek ADT1100 and Digitek DT950 from PRIMION DIGITEK, S.L.U (Azkoyen Group). This vulnerability allows an attacker to access arbitrary files in the server's file system, thet is, 'http://<host>/..%2F..% 2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fetc%2Fpasswd'. By manipulating the input to include URL encoded directory traversal sequences (e.g., %2F representing /), an attacker can bypass the input validation mechanisms ans retrieve sensitive files outside the intended directory, which could lead to information disclosure or further system compromise. |
| The Peter's Date Countdown plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the `$_SERVER['PHP_SELF']` parameter in all versions up to, and including, 2.0.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link. |
| The Greenshift – animation and page builder blocks plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the greenshift_app_pass_validation() function in all versions up to, and including, 12.5.7. This makes it possible for authenticated attackers, with Subscriber-level access and above, to retrieve global plugin settings including stored AI API keys. |
| Nukegraphic CMS v3.1.2 contains a stored cross-site scripting (XSS) vulnerability in the user profile edit functionality at /ngc-cms/user-edit-profile.php. The application fails to properly sanitize user input in the name field before storing it in the database and rendering it across multiple CMS pages. An authenticated attacker with low privileges can inject malicious JavaScript payloads through the profile edit request, which are then executed site-wide whenever the affected user's name is displayed. This allows the attacker to execute arbitrary JavaScript in the context of other users' sessions, potentially leading to session hijacking, credential theft, or unauthorized actions performed on behalf of victims. |
| Quick.Cart allows a user's session identifier to be set before authentication. The value of this session ID stays the same after authentication. This behaviour enables an attacker to fix a session ID
for a victim and later hijack the authenticated session.
The vendor was notified early about this vulnerability, but didn't respond with the details of vulnerability or vulnerable version range. Only version 6.7 was tested and confirmed as vulnerable, other versions were not tested and might also be vulnerable. |