| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper handling of overlap between the segmented reverse map table (RMP) and system management mode (SMM) memory could allow a privileged attacker corrupt or partially infer SMM memory resulting in loss of integrity or confidentiality. |
| Improper bound check within AMD CPU microcode can allow a malicious guest to write to host memory, potentially resulting in loss of integrity. |
| Missing Checks in certain functions related to RMP initialization can allow a local admin privileged attacker to cause misidentification of I/O memory, potentially resulting in a loss of guest memory integrity |
| Improper isolation of shared resources on a system on a chip by a malicious local attacker with high privileges could potentially lead to a partial loss of integrity. |
| Insufficient Granularity of Access Control in SEV firmware can allow a privileged attacker to create a SEV-ES Guest to attack SNP guest, potentially resulting in a loss of confidentiality. |
| A use after free in the SEV firmware could allow a malicous hypervisor to activate a migrated guest with the SINGLE_SOCKET policy on a different socket than the migration agent potentially resulting in loss of integrity. |
| Improper handling of error condition during host-induced faults can allow a local high-privileged attack to selectively drop guest DMA writes, potentially resulting in a loss of SEV-SNP guest memory integrity |
| Insufficient or Incomplete Data Removal in Hardware Component in SEV firmware doesn't fully flush IOMMU. This can potentially lead to a loss of confidentiality and integrity in guest memory. |
| Improper input validation in the SMM communications buffer could allow a privileged attacker to perform an out of bounds read or write to SMRAM potentially resulting in loss of confidentiality or integrity. |
| Improper input validation in the SMM handler could allow an attacker with Ring0 access to write to SMRAM and modify execution flow for S3 (sleep) wake up, potentially resulting in arbitrary code execution. |
| Insufficient input parameter sanitization in AMD Secure Processor (ASP) Boot Loader (legacy recovery mode only) could allow an attacker to write out-of-bounds to corrupt Secure DRAM potentially resulting in denial of service. |
| Improper system call parameter validation in the Trusted OS may allow a malicious driver to perform mapping or unmapping operations on a large number of pages, potentially resulting in kernel memory corruption. |
| Insufficient parameter sanitization in AMD Secure Processor (ASP) Boot Loader could allow an attacker with access to SPIROM upgrade to overwrite the memory, potentially resulting in arbitrary code execution. |
| A Time-of-check time-of-use (TOCTOU) race condition in the SMM communications buffer could allow a privileged attacker to bypass input validation and perform an out of bounds read or write, potentially resulting in loss of confidentiality, integrity, or availability. |
| A buffer overflow in the AMD Secure Processor (ASP) bootloader could allow an attacker to overwrite memory, potentially resulting in privilege escalation and arbitrary code execution. |
| A DLL hijacking vulnerability in the AMD Software Installer could allow an attacker to achieve privilege escalation potentially resulting in arbitrary code execution. |
| The integer overflow vulnerability within AMD Graphics driver could allow an attacker to bypass size checks potentially resulting in a denial of service |
| Improper input validation in AMD Graphics Driver could allow an attacker to supply a specially crafted pointer, potentially leading to arbitrary code execution. |
| Improper handling of parameters in the AMD Secure Processor (ASP) could allow a privileged attacker to pass an arbitrary memory value to functions in the trusted execution environment resulting in arbitrary code execution |
| Integer Overflow within atihdwt6.sys can allow a local attacker to cause out of bound read/write potentially leading to loss of confidentiality, integrity and availability |