Search

Search Results (323739 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50626 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: dvb-usb: fix memory leak in dvb_usb_adapter_init() Syzbot reports a memory leak in "dvb_usb_adapter_init()". The leak is due to not accounting for and freeing current iteration's adapter->priv in case of an error. Currently if an error occurs, it will exit before incrementing "num_adapters_initalized", which is used as a reference counter to free all adap->priv in "dvb_usb_adapter_exit()". There are multiple error paths that can exit from before incrementing the counter. Including the error handling paths for "dvb_usb_adapter_stream_init()", "dvb_usb_adapter_dvb_init()" and "dvb_usb_adapter_frontend_init()" within "dvb_usb_adapter_init()". This means that in case of an error in any of these functions the current iteration is not accounted for and the current iteration's adap->priv is not freed. Fix this by freeing the current iteration's adap->priv in the "stream_init_err:" label in the error path. The rest of the (accounted for) adap->priv objects are freed in dvb_usb_adapter_exit() as expected using the num_adapters_initalized variable. Syzbot report: BUG: memory leak unreferenced object 0xffff8881172f1a00 (size 512): comm "kworker/0:2", pid 139, jiffies 4294994873 (age 10.960s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff844af012>] dvb_usb_adapter_init drivers/media/usb/dvb-usb/dvb-usb-init.c:75 [inline] [<ffffffff844af012>] dvb_usb_init drivers/media/usb/dvb-usb/dvb-usb-init.c:184 [inline] [<ffffffff844af012>] dvb_usb_device_init.cold+0x4e5/0x79e drivers/media/usb/dvb-usb/dvb-usb-init.c:308 [<ffffffff830db21d>] dib0700_probe+0x8d/0x1b0 drivers/media/usb/dvb-usb/dib0700_core.c:883 [<ffffffff82d3fdc7>] usb_probe_interface+0x177/0x370 drivers/usb/core/driver.c:396 [<ffffffff8274ab37>] call_driver_probe drivers/base/dd.c:542 [inline] [<ffffffff8274ab37>] really_probe.part.0+0xe7/0x310 drivers/base/dd.c:621 [<ffffffff8274ae6c>] really_probe drivers/base/dd.c:583 [inline] [<ffffffff8274ae6c>] __driver_probe_device+0x10c/0x1e0 drivers/base/dd.c:752 [<ffffffff8274af6a>] driver_probe_device+0x2a/0x120 drivers/base/dd.c:782 [<ffffffff8274b786>] __device_attach_driver+0xf6/0x140 drivers/base/dd.c:899 [<ffffffff82747c87>] bus_for_each_drv+0xb7/0x100 drivers/base/bus.c:427 [<ffffffff8274b352>] __device_attach+0x122/0x260 drivers/base/dd.c:970 [<ffffffff827498f6>] bus_probe_device+0xc6/0xe0 drivers/base/bus.c:487 [<ffffffff82745cdb>] device_add+0x5fb/0xdf0 drivers/base/core.c:3405 [<ffffffff82d3d202>] usb_set_configuration+0x8f2/0xb80 drivers/usb/core/message.c:2170 [<ffffffff82d4dbfc>] usb_generic_driver_probe+0x8c/0xc0 drivers/usb/core/generic.c:238 [<ffffffff82d3f49c>] usb_probe_device+0x5c/0x140 drivers/usb/core/driver.c:293 [<ffffffff8274ab37>] call_driver_probe drivers/base/dd.c:542 [inline] [<ffffffff8274ab37>] really_probe.part.0+0xe7/0x310 drivers/base/dd.c:621 [<ffffffff8274ae6c>] really_probe drivers/base/dd.c:583 [inline] [<ffffffff8274ae6c>] __driver_probe_device+0x10c/0x1e0 drivers/base/dd.c:752
CVE-2022-50622 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix potential memory leak in ext4_fc_record_modified_inode() As krealloc may return NULL, in this case 'state->fc_modified_inodes' may not be freed by krealloc, but 'state->fc_modified_inodes' already set NULL. Then will lead to 'state->fc_modified_inodes' memory leak.
CVE-2022-50616 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: regulator: core: Use different devices for resource allocation and DT lookup Following by the below discussion, there's the potential UAF issue between regulator and mfd. https://lore.kernel.org/all/20221128143601.1698148-1-yangyingliang@huawei.com/ From the analysis of Yingliang CPU A |CPU B mt6370_probe() | devm_mfd_add_devices() | |mt6370_regulator_probe() | regulator_register() | //allocate init_data and add it to devres | regulator_of_get_init_data() i2c_unregister_device() | device_del() | devres_release_all() | // init_data is freed | release_nodes() | | // using init_data causes UAF | regulator_register() It's common to use mfd core to create child device for the regulator. In order to do the DT lookup for init data, the child that registered the regulator would pass its parent as the parameter. And this causes init data resource allocated to its parent, not itself. The issue happen when parent device is going to release and regulator core is still doing some operation of init data constraint for the regulator of child device. To fix it, this patch expand 'regulator_register' API to use the different devices for init data allocation and DT lookup.
CVE-2022-50583 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: md/raid0, raid10: Don't set discard sectors for request queue It should use disk_stack_limits to get a proper max_discard_sectors rather than setting a value by stack drivers. And there is a bug. If all member disks are rotational devices, raid0/raid10 set max_discard_sectors. So the member devices are not ssd/nvme, but raid0/raid10 export the wrong value. It reports warning messages in function __blkdev_issue_discard when mkfs.xfs like this: [ 4616.022599] ------------[ cut here ]------------ [ 4616.027779] WARNING: CPU: 4 PID: 99634 at block/blk-lib.c:50 __blkdev_issue_discard+0x16a/0x1a0 [ 4616.140663] RIP: 0010:__blkdev_issue_discard+0x16a/0x1a0 [ 4616.146601] Code: 24 4c 89 20 31 c0 e9 fe fe ff ff c1 e8 09 8d 48 ff 4c 89 f0 4c 09 e8 48 85 c1 0f 84 55 ff ff ff b8 ea ff ff ff e9 df fe ff ff <0f> 0b 48 8d 74 24 08 e8 ea d6 00 00 48 c7 c6 20 1e 89 ab 48 c7 c7 [ 4616.167567] RSP: 0018:ffffaab88cbffca8 EFLAGS: 00010246 [ 4616.173406] RAX: ffff9ba1f9e44678 RBX: 0000000000000000 RCX: ffff9ba1c9792080 [ 4616.181376] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff9ba1c9792080 [ 4616.189345] RBP: 0000000000000cc0 R08: ffffaab88cbffd10 R09: 0000000000000000 [ 4616.197317] R10: 0000000000000012 R11: 0000000000000000 R12: 0000000000000000 [ 4616.205288] R13: 0000000000400000 R14: 0000000000000cc0 R15: ffff9ba1c9792080 [ 4616.213259] FS: 00007f9a5534e980(0000) GS:ffff9ba1b7c80000(0000) knlGS:0000000000000000 [ 4616.222298] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4616.228719] CR2: 000055a390a4c518 CR3: 0000000123e40006 CR4: 00000000001706e0 [ 4616.236689] Call Trace: [ 4616.239428] blkdev_issue_discard+0x52/0xb0 [ 4616.244108] blkdev_common_ioctl+0x43c/0xa00 [ 4616.248883] blkdev_ioctl+0x116/0x280 [ 4616.252977] __x64_sys_ioctl+0x8a/0xc0 [ 4616.257163] do_syscall_64+0x5c/0x90 [ 4616.261164] ? handle_mm_fault+0xc5/0x2a0 [ 4616.265652] ? do_user_addr_fault+0x1d8/0x690 [ 4616.270527] ? do_syscall_64+0x69/0x90 [ 4616.274717] ? exc_page_fault+0x62/0x150 [ 4616.279097] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 4616.284748] RIP: 0033:0x7f9a55398c6b
CVE-2022-50582 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: regulator: core: Prevent integer underflow By using a ratio of delay to poll_enabled_time that is not integer time_remaining underflows and does not exit the loop as expected. As delay could be derived from DT and poll_enabled_time is defined in the driver this can easily happen. Use a signed iterator to make sure that the loop exits once the remaining time is negative.
CVE-2022-50581 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hfs: fix OOB Read in __hfs_brec_find Syzbot reported a OOB read bug: ================================================================== BUG: KASAN: slab-out-of-bounds in hfs_strcmp+0x117/0x190 fs/hfs/string.c:84 Read of size 1 at addr ffff88807eb62c4e by task kworker/u4:1/11 CPU: 1 PID: 11 Comm: kworker/u4:1 Not tainted 6.1.0-rc6-syzkaller-00308-g644e9524388a #0 Workqueue: writeback wb_workfn (flush-7:0) Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report+0xcd/0x100 mm/kasan/report.c:495 hfs_strcmp+0x117/0x190 fs/hfs/string.c:84 __hfs_brec_find+0x213/0x5c0 fs/hfs/bfind.c:75 hfs_brec_find+0x276/0x520 fs/hfs/bfind.c:138 hfs_write_inode+0x34c/0xb40 fs/hfs/inode.c:462 write_inode fs/fs-writeback.c:1440 [inline] If the input inode of hfs_write_inode() is incorrect: struct inode struct hfs_inode_info struct hfs_cat_key struct hfs_name u8 len # len is greater than HFS_NAMELEN(31) which is the maximum length of an HFS filename OOB read occurred: hfs_write_inode() hfs_brec_find() __hfs_brec_find() hfs_cat_keycmp() hfs_strcmp() # OOB read occurred due to len is too large Fix this by adding a Check on len in hfs_write_inode() before calling hfs_brec_find().
CVE-2022-50580 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-throttle: prevent overflow while calculating wait time There is a problem found by code review in tg_with_in_bps_limit() that 'bps_limit * jiffy_elapsed_rnd' might overflow. Fix the problem by calling mul_u64_u64_div_u64() instead.
CVE-2022-50571 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: call __btrfs_remove_free_space_cache_locked on cache load failure Now that lockdep is staying enabled through our entire CI runs I started seeing the following stack in generic/475 ------------[ cut here ]------------ WARNING: CPU: 1 PID: 2171864 at fs/btrfs/discard.c:604 btrfs_discard_update_discardable+0x98/0xb0 CPU: 1 PID: 2171864 Comm: kworker/u4:0 Not tainted 5.19.0-rc8+ #789 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Workqueue: btrfs-cache btrfs_work_helper RIP: 0010:btrfs_discard_update_discardable+0x98/0xb0 RSP: 0018:ffffb857c2f7bad0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8c85c605c200 RCX: 0000000000000001 RDX: 0000000000000000 RSI: ffffffff86807c5b RDI: ffffffff868a831e RBP: ffff8c85c4c54000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff8c85c66932f0 R11: 0000000000000001 R12: ffff8c85c3899010 R13: ffff8c85d5be4f40 R14: ffff8c85c4c54000 R15: ffff8c86114bfa80 FS: 0000000000000000(0000) GS:ffff8c863bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2e7f168160 CR3: 000000010289a004 CR4: 0000000000370ee0 Call Trace: __btrfs_remove_free_space_cache+0x27/0x30 load_free_space_cache+0xad2/0xaf0 caching_thread+0x40b/0x650 ? lock_release+0x137/0x2d0 btrfs_work_helper+0xf2/0x3e0 ? lock_is_held_type+0xe2/0x140 process_one_work+0x271/0x590 ? process_one_work+0x590/0x590 worker_thread+0x52/0x3b0 ? process_one_work+0x590/0x590 kthread+0xf0/0x120 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 This is the code ctl = block_group->free_space_ctl; discard_ctl = &block_group->fs_info->discard_ctl; lockdep_assert_held(&ctl->tree_lock); We have a temporary free space ctl for loading the free space cache in order to avoid having allocations happening while we're loading the cache. When we hit an error we free it all up, however this also calls btrfs_discard_update_discardable, which requires block_group->free_space_ctl->tree_lock to be held. However this is our temporary ctl so this lock isn't held. Fix this by calling __btrfs_remove_free_space_cache_locked instead so that we only clean up the entries and do not mess with the discardable stats.
CVE-2022-50569 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: Update ipcomp_scratches with NULL when freed Currently if ipcomp_alloc_scratches() fails to allocate memory ipcomp_scratches holds obsolete address. So when we try to free the percpu scratches using ipcomp_free_scratches() it tries to vfree non existent vm area. Described below: static void * __percpu *ipcomp_alloc_scratches(void) { ... scratches = alloc_percpu(void *); if (!scratches) return NULL; ipcomp_scratches does not know about this allocation failure. Therefore holding the old obsolete address. ... } So when we free, static void ipcomp_free_scratches(void) { ... scratches = ipcomp_scratches; Assigning obsolete address from ipcomp_scratches if (!scratches) return; for_each_possible_cpu(i) vfree(*per_cpu_ptr(scratches, i)); Trying to free non existent page, causing warning: trying to vfree existent vm area. ... } Fix this breakage by updating ipcomp_scrtches with NULL when scratches is freed
CVE-2022-50567 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs: jfs: fix shift-out-of-bounds in dbAllocAG Syzbot found a crash : UBSAN: shift-out-of-bounds in dbAllocAG. The underlying bug is the missing check of bmp->db_agl2size. The field can be greater than 64 and trigger the shift-out-of-bounds. Fix this bug by adding a check of bmp->db_agl2size in dbMount since this field is used in many following functions. The upper bound for this field is L2MAXL2SIZE - L2MAXAG, thanks for the help of Dave Kleikamp. Note that, for maintenance, I reorganized error handling code of dbMount.
CVE-2022-50564 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/netiucv: Fix return type of netiucv_tx() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/s390/net/netiucv.c:1854:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict] .ndo_start_xmit = netiucv_tx, ^~~~~~~~~~ ->ndo_start_xmit() in 'struct net_device_ops' expects a return type of 'netdev_tx_t', not 'int'. Adjust the return type of netiucv_tx() to match the prototype's to resolve the warning and potential CFI failure, should s390 select ARCH_SUPPORTS_CFI_CLANG in the future. Additionally, while in the area, remove a comment block that is no longer relevant.
CVE-2022-50554 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: blk-mq: avoid double ->queue_rq() because of early timeout David Jeffery found one double ->queue_rq() issue, so far it can be triggered in VM use case because of long vmexit latency or preempt latency of vCPU pthread or long page fault in vCPU pthread, then block IO req could be timed out before queuing the request to hardware but after calling blk_mq_start_request() during ->queue_rq(), then timeout handler may handle it by requeue, then double ->queue_rq() is caused, and kernel panic. So far, it is driver's responsibility to cover the race between timeout and completion, so it seems supposed to be solved in driver in theory, given driver has enough knowledge. But it is really one common problem, lots of driver could have similar issue, and could be hard to fix all affected drivers, even it isn't easy for driver to handle the race. So David suggests this patch by draining in-progress ->queue_rq() for solving this issue.
CVE-2022-50552 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: blk-mq: use quiesced elevator switch when reinitializing queues The hctx's run_work may be racing with the elevator switch when reinitializing hardware queues. The queue is merely frozen in this context, but that only prevents requests from allocating and doesn't stop the hctx work from running. The work may get an elevator pointer that's being torn down, and can result in use-after-free errors and kernel panics (example below). Use the quiesced elevator switch instead, and make the previous one static since it is now only used locally. nvme nvme0: resetting controller nvme nvme0: 32/0/0 default/read/poll queues BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 80000020c8861067 P4D 80000020c8861067 PUD 250f8c8067 PMD 0 Oops: 0000 [#1] SMP PTI Workqueue: kblockd blk_mq_run_work_fn RIP: 0010:kyber_has_work+0x29/0x70 ... Call Trace: __blk_mq_do_dispatch_sched+0x83/0x2b0 __blk_mq_sched_dispatch_requests+0x12e/0x170 blk_mq_sched_dispatch_requests+0x30/0x60 __blk_mq_run_hw_queue+0x2b/0x50 process_one_work+0x1ef/0x380 worker_thread+0x2d/0x3e0
CVE-2022-50551 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request() This patch fixes a shift-out-of-bounds in brcmfmac that occurs in BIT(chiprev) when a 'chiprev' provided by the device is too large. It should also not be equal to or greater than BITS_PER_TYPE(u32) as we do bitwise AND with a u32 variable and BIT(chiprev). The patch adds a check that makes the function return NULL if that is the case. Note that the NULL case is later handled by the bus-specific caller, brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example. Found by a modified version of syzkaller. UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c shift exponent 151055786 is too large for 64-bit type 'long unsigned int' CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x57/0x7d ubsan_epilogue+0x5/0x40 __ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb ? lock_chain_count+0x20/0x20 brcmf_fw_alloc_request.cold+0x19/0x3ea ? brcmf_fw_get_firmwares+0x250/0x250 ? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0 brcmf_usb_get_fwname+0x114/0x1a0 ? brcmf_usb_reset_resume+0x120/0x120 ? number+0x6c4/0x9a0 brcmf_c_process_clm_blob+0x168/0x590 ? put_dec+0x90/0x90 ? enable_ptr_key_workfn+0x20/0x20 ? brcmf_common_pd_remove+0x50/0x50 ? rcu_read_lock_sched_held+0xa1/0xd0 brcmf_c_preinit_dcmds+0x673/0xc40 ? brcmf_c_set_joinpref_default+0x100/0x100 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lock_acquire+0x19d/0x4e0 ? find_held_lock+0x2d/0x110 ? brcmf_usb_deq+0x1cc/0x260 ? mark_held_locks+0x9f/0xe0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? _raw_spin_unlock_irqrestore+0x47/0x50 ? trace_hardirqs_on+0x1c/0x120 ? brcmf_usb_deq+0x1a7/0x260 ? brcmf_usb_rx_fill_all+0x5a/0xf0 brcmf_attach+0x246/0xd40 ? wiphy_new_nm+0x1476/0x1d50 ? kmemdup+0x30/0x40 brcmf_usb_probe+0x12de/0x1690 ? brcmf_usbdev_qinit.constprop.0+0x470/0x470 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 ? usb_match_id.part.0+0x88/0xc0 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 ? driver_allows_async_probing+0x120/0x120 bus_for_each_drv+0x123/0x1a0 ? bus_rescan_devices+0x20/0x20 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? trace_hardirqs_on+0x1c/0x120 __device_attach+0x207/0x330 ? device_bind_driver+0xb0/0xb0 ? kobject_uevent_env+0x230/0x12c0 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 ? __mutex_unlock_slowpath+0xe7/0x660 ? __fw_devlink_link_to_suppliers+0x550/0x550 usb_set_configuration+0x984/0x1770 ? kernfs_create_link+0x175/0x230 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 ? driver_allows_async_probing+0x120/0x120 bus_for_each_drv+0x123/0x1a0 ? bus_rescan_devices+0x20/0x20 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? trace_hardirqs_on+0x1c/0x120 __device_attach+0x207/0x330 ? device_bind_driver+0xb0/0xb0 ? kobject_uevent_env+0x230/0x12c0 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 ? __fw_devlink_link_to_suppliers+0x550/0x550 usb_new_device.cold+0x463/0xf66 ? hub_disconnect+0x400/0x400 ? _raw_spin_unlock_irq+0x24/0x30 hub_event+0x10d5/0x3330 ? hub_port_debounce+0x280/0x280 ? __lock_acquire+0x1671/0x5790 ? wq_calc_node_cpumask+0x170/0x2a0 ? lock_release+0x640/0x640 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 process_one_work+0x873/0x13e0 ? lock_release+0x640/0x640 ? pwq_dec_nr_in_flight+0x320/0x320 ? rwlock_bug.part.0+0x90/0x90 worker_thread+0x8b/0xd10 ? __kthread_parkme+0xd9/0x1d0 ? pr ---truncated---
CVE-2022-50544 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: host: xhci: Fix potential memory leak in xhci_alloc_stream_info() xhci_alloc_stream_info() allocates stream context array for stream_info ->stream_ctx_array with xhci_alloc_stream_ctx(). When some error occurs, stream_info->stream_ctx_array is not released, which will lead to a memory leak. We can fix it by releasing the stream_info->stream_ctx_array with xhci_free_stream_ctx() on the error path to avoid the potential memory leak.
CVE-2022-50542 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: si470x: Fix use-after-free in si470x_int_in_callback() syzbot reported use-after-free in si470x_int_in_callback() [1]. This indicates that urb->context, which contains struct si470x_device object, is freed when si470x_int_in_callback() is called. The cause of this issue is that si470x_int_in_callback() is called for freed urb. si470x_usb_driver_probe() calls si470x_start_usb(), which then calls usb_submit_urb() and si470x_start(). If si470x_start_usb() fails, si470x_usb_driver_probe() doesn't kill urb, but it just frees struct si470x_device object, as depicted below: si470x_usb_driver_probe() ... si470x_start_usb() ... usb_submit_urb() retval = si470x_start() return retval if (retval < 0) free struct si470x_device object, but don't kill urb This patch fixes this issue by killing urb when si470x_start_usb() fails and urb is submitted. If si470x_start_usb() fails and urb is not submitted, i.e. submitting usb fails, it just frees struct si470x_device object.
CVE-2022-50539 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: OMAP2+: omap4-common: Fix refcount leak bug In omap4_sram_init(), of_find_compatible_node() will return a node pointer with refcount incremented. We should use of_node_put() when it is not used anymore.
CVE-2022-50519 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure If creation or finalization of a checkpoint fails due to anomalies in the checkpoint metadata on disk, a kernel warning is generated. This patch replaces the WARN_ONs by nilfs_error, so that a kernel, booted with panic_on_warn, does not panic. A nilfs_error is appropriate here to handle the abnormal filesystem condition. This also replaces the detected error codes with an I/O error so that neither of the internal error codes is returned to callers.
CVE-2022-50518 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: parisc: Fix locking in pdc_iodc_print() firmware call Utilize pdc_lock spinlock to protect parallel modifications of the iodc_dbuf[] buffer, check length to prevent buffer overflow of iodc_dbuf[], drop the iodc_retbuf[] buffer and fix some wrong indentings.
CVE-2022-50516 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs: dlm: fix invalid derefence of sb_lvbptr I experience issues when putting a lkbsb on the stack and have sb_lvbptr field to a dangled pointer while not using DLM_LKF_VALBLK. It will crash with the following kernel message, the dangled pointer is here 0xdeadbeef as example: [ 102.749317] BUG: unable to handle page fault for address: 00000000deadbeef [ 102.749320] #PF: supervisor read access in kernel mode [ 102.749323] #PF: error_code(0x0000) - not-present page [ 102.749325] PGD 0 P4D 0 [ 102.749332] Oops: 0000 [#1] PREEMPT SMP PTI [ 102.749336] CPU: 0 PID: 1567 Comm: lock_torture_wr Tainted: G W 5.19.0-rc3+ #1565 [ 102.749343] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-2.module+el8.7.0+15506+033991b0 04/01/2014 [ 102.749344] RIP: 0010:memcpy_erms+0x6/0x10 [ 102.749353] Code: cc cc cc cc eb 1e 0f 1f 00 48 89 f8 48 89 d1 48 c1 e9 03 83 e2 07 f3 48 a5 89 d1 f3 a4 c3 66 0f 1f 44 00 00 48 89 f8 48 89 d1 <f3> a4 c3 0f 1f 80 00 00 00 00 48 89 f8 48 83 fa 20 72 7e 40 38 fe [ 102.749355] RSP: 0018:ffff97a58145fd08 EFLAGS: 00010202 [ 102.749358] RAX: ffff901778b77070 RBX: 0000000000000000 RCX: 0000000000000040 [ 102.749360] RDX: 0000000000000040 RSI: 00000000deadbeef RDI: ffff901778b77070 [ 102.749362] RBP: ffff97a58145fd10 R08: ffff901760b67a70 R09: 0000000000000001 [ 102.749364] R10: ffff9017008e2cb8 R11: 0000000000000001 R12: ffff901760b67a70 [ 102.749366] R13: ffff901760b78f00 R14: 0000000000000003 R15: 0000000000000001 [ 102.749368] FS: 0000000000000000(0000) GS:ffff901876e00000(0000) knlGS:0000000000000000 [ 102.749372] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 102.749374] CR2: 00000000deadbeef CR3: 000000017c49a004 CR4: 0000000000770ef0 [ 102.749376] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 102.749378] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 102.749379] PKRU: 55555554 [ 102.749381] Call Trace: [ 102.749382] <TASK> [ 102.749383] ? send_args+0xb2/0xd0 [ 102.749389] send_common+0xb7/0xd0 [ 102.749395] _unlock_lock+0x2c/0x90 [ 102.749400] unlock_lock.isra.56+0x62/0xa0 [ 102.749405] dlm_unlock+0x21e/0x330 [ 102.749411] ? lock_torture_stats+0x80/0x80 [dlm_locktorture] [ 102.749416] torture_unlock+0x5a/0x90 [dlm_locktorture] [ 102.749419] ? preempt_count_sub+0xba/0x100 [ 102.749427] lock_torture_writer+0xbd/0x150 [dlm_locktorture] [ 102.786186] kthread+0x10a/0x130 [ 102.786581] ? kthread_complete_and_exit+0x20/0x20 [ 102.787156] ret_from_fork+0x22/0x30 [ 102.787588] </TASK> [ 102.787855] Modules linked in: dlm_locktorture torture rpcsec_gss_krb5 intel_rapl_msr intel_rapl_common kvm_intel iTCO_wdt iTCO_vendor_support kvm vmw_vsock_virtio_transport qxl irqbypass vmw_vsock_virtio_transport_common drm_ttm_helper crc32_pclmul joydev crc32c_intel ttm vsock virtio_scsi virtio_balloon snd_pcm drm_kms_helper virtio_console snd_timer snd drm soundcore syscopyarea i2c_i801 sysfillrect sysimgblt i2c_smbus pcspkr fb_sys_fops lpc_ich serio_raw [ 102.792536] CR2: 00000000deadbeef [ 102.792930] ---[ end trace 0000000000000000 ]--- This patch fixes the issue by checking also on DLM_LKF_VALBLK on exflags is set when copying the lvbptr array instead of if it's just null which fixes for me the issue. I think this patch can fix other dlm users as well, depending how they handle the init, freeing memory handling of sb_lvbptr and don't set DLM_LKF_VALBLK for some dlm_lock() calls. It might a there could be a hidden issue all the time. However with checking on DLM_LKF_VALBLK the user always need to provide a sb_lvbptr non-null value. There might be more intelligent handling between per ls lvblen, DLM_LKF_VALBLK and non-null to report the user the way how DLM API is used is wrong but can be added for later, this will only fix the current behaviour.