| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netrom: Fix memory leak in nr_sendmsg()
syzbot reported a memory leak [1].
When function sock_alloc_send_skb() return NULL in nr_output(), the
original skb is not freed, which was allocated in nr_sendmsg(). Fix this
by freeing it before return.
[1]
BUG: memory leak
unreferenced object 0xffff888129f35500 (size 240):
comm "syz.0.17", pid 6119, jiffies 4294944652
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 10 52 28 81 88 ff ff ..........R(....
backtrace (crc 1456a3e4):
kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline]
slab_post_alloc_hook mm/slub.c:4983 [inline]
slab_alloc_node mm/slub.c:5288 [inline]
kmem_cache_alloc_node_noprof+0x36f/0x5e0 mm/slub.c:5340
__alloc_skb+0x203/0x240 net/core/skbuff.c:660
alloc_skb include/linux/skbuff.h:1383 [inline]
alloc_skb_with_frags+0x69/0x3f0 net/core/skbuff.c:6671
sock_alloc_send_pskb+0x379/0x3e0 net/core/sock.c:2965
sock_alloc_send_skb include/net/sock.h:1859 [inline]
nr_sendmsg+0x287/0x450 net/netrom/af_netrom.c:1105
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg net/socket.c:742 [inline]
sock_write_iter+0x293/0x2a0 net/socket.c:1195
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x45d/0x710 fs/read_write.c:686
ksys_write+0x143/0x170 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xa4/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: skip lock-range check on equal size to avoid size==0 underflow
When size equals the current i_size (including 0), the code used to call
check_lock_range(filp, i_size, size - 1, WRITE), which computes `size - 1`
and can underflow for size==0. Skip the equal case. |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix middle attribute validation in push_nsh() action
The push_nsh() action structure looks like this:
OVS_ACTION_ATTR_PUSH_NSH(OVS_KEY_ATTR_NSH(OVS_NSH_KEY_ATTR_BASE,...))
The outermost OVS_ACTION_ATTR_PUSH_NSH attribute is OK'ed by the
nla_for_each_nested() inside __ovs_nla_copy_actions(). The innermost
OVS_NSH_KEY_ATTR_BASE/MD1/MD2 are OK'ed by the nla_for_each_nested()
inside nsh_key_put_from_nlattr(). But nothing checks if the attribute
in the middle is OK. We don't even check that this attribute is the
OVS_KEY_ATTR_NSH. We just do a double unwrap with a pair of nla_data()
calls - first time directly while calling validate_push_nsh() and the
second time as part of the nla_for_each_nested() macro, which isn't
safe, potentially causing invalid memory access if the size of this
attribute is incorrect. The failure may not be noticed during
validation due to larger netlink buffer, but cause trouble later during
action execution where the buffer is allocated exactly to the size:
BUG: KASAN: slab-out-of-bounds in nsh_hdr_from_nlattr+0x1dd/0x6a0 [openvswitch]
Read of size 184 at addr ffff88816459a634 by task a.out/22624
CPU: 8 UID: 0 PID: 22624 6.18.0-rc7+ #115 PREEMPT(voluntary)
Call Trace:
<TASK>
dump_stack_lvl+0x51/0x70
print_address_description.constprop.0+0x2c/0x390
kasan_report+0xdd/0x110
kasan_check_range+0x35/0x1b0
__asan_memcpy+0x20/0x60
nsh_hdr_from_nlattr+0x1dd/0x6a0 [openvswitch]
push_nsh+0x82/0x120 [openvswitch]
do_execute_actions+0x1405/0x2840 [openvswitch]
ovs_execute_actions+0xd5/0x3b0 [openvswitch]
ovs_packet_cmd_execute+0x949/0xdb0 [openvswitch]
genl_family_rcv_msg_doit+0x1d6/0x2b0
genl_family_rcv_msg+0x336/0x580
genl_rcv_msg+0x9f/0x130
netlink_rcv_skb+0x11f/0x370
genl_rcv+0x24/0x40
netlink_unicast+0x73e/0xaa0
netlink_sendmsg+0x744/0xbf0
__sys_sendto+0x3d6/0x450
do_syscall_64+0x79/0x2c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
Let's add some checks that the attribute is properly sized and it's
the only one attribute inside the action. Technically, there is no
real reason for OVS_KEY_ATTR_NSH to be there, as we know that we're
pushing an NSH header already, it just creates extra nesting, but
that's how uAPI works today. So, keeping as it is. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix a UAF problem in xattr repair
The xchk_setup_xattr_buf function can allocate a new value buffer, which
means that any reference to ab->value before the call could become a
dangling pointer. Fix this by moving an assignment to after the buffer
setup. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-mixer: us16x08: validate meter packet indices
get_meter_levels_from_urb() parses the 64-byte meter packets sent by
the device and fills the per-channel arrays meter_level[],
comp_level[] and master_level[] in struct snd_us16x08_meter_store.
Currently the function derives the channel index directly from the
meter packet (MUB2(meter_urb, s) - 1) and uses it to index those
arrays without validating the range. If the packet contains a
negative or out-of-range channel number, the driver may write past
the end of these arrays.
Introduce a local channel variable and validate it before updating the
arrays. We reject negative indices, limit meter_level[] and
comp_level[] to SND_US16X08_MAX_CHANNELS, and guard master_level[]
updates with ARRAY_SIZE(master_level). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Reset t_task_cdb pointer in error case
If allocation of cmd->t_task_cdb fails, it remains NULL but is later
dereferenced in the 'err' path.
In case of error, reset NULL t_task_cdb value to point at the default
fixed-size buffer.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: phy: fsl-usb: Fix use-after-free in delayed work during device removal
The delayed work item otg_event is initialized in fsl_otg_conf() and
scheduled under two conditions:
1. When a host controller binds to the OTG controller.
2. When the USB ID pin state changes (cable insertion/removal).
A race condition occurs when the device is removed via fsl_otg_remove():
the fsl_otg instance may be freed while the delayed work is still pending
or executing. This leads to use-after-free when the work function
fsl_otg_event() accesses the already freed memory.
The problematic scenario:
(detach thread) | (delayed work)
fsl_otg_remove() |
kfree(fsl_otg_dev) //FREE| fsl_otg_event()
| og = container_of(...) //USE
| og-> //USE
Fix this by calling disable_delayed_work_sync() in fsl_otg_remove()
before deallocating the fsl_otg structure. This ensures the delayed work
is properly canceled and completes execution prior to memory deallocation.
This bug was identified through static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/deadline: only set free_cpus for online runqueues
Commit 16b269436b72 ("sched/deadline: Modify cpudl::free_cpus
to reflect rd->online") introduced the cpudl_set/clear_freecpu
functions to allow the cpu_dl::free_cpus mask to be manipulated
by the deadline scheduler class rq_on/offline callbacks so the
mask would also reflect this state.
Commit 9659e1eeee28 ("sched/deadline: Remove cpu_active_mask
from cpudl_find()") removed the check of the cpu_active_mask to
save some processing on the premise that the cpudl::free_cpus
mask already reflected the runqueue online state.
Unfortunately, there are cases where it is possible for the
cpudl_clear function to set the free_cpus bit for a CPU when the
deadline runqueue is offline. When this occurs while a CPU is
connected to the default root domain the flag may retain the bad
state after the CPU has been unplugged. Later, a different CPU
that is transitioning through the default root domain may push a
deadline task to the powered down CPU when cpudl_find sees its
free_cpus bit is set. If this happens the task will not have the
opportunity to run.
One example is outlined here:
https://lore.kernel.org/lkml/20250110233010.2339521-1-opendmb@gmail.com
Another occurs when the last deadline task is migrated from a
CPU that has an offlined runqueue. The dequeue_task member of
the deadline scheduler class will eventually call cpudl_clear
and set the free_cpus bit for the CPU.
This commit modifies the cpudl_clear function to be aware of the
online state of the deadline runqueue so that the free_cpus mask
can be updated appropriately.
It is no longer necessary to manage the mask outside of the
cpudl_set/clear functions so the cpudl_set/clear_freecpu
functions are removed. In addition, since the free_cpus mask is
now only updated under the cpudl lock the code was changed to
use the non-atomic __cpumask functions. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Avoid unregistering PSP twice
PSP is unregistered twice in:
_mlx5e_remove -> mlx5e_psp_unregister
mlx5e_nic_cleanup -> mlx5e_psp_unregister
This leads to a refcount underflow in some conditions:
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 2 PID: 1694 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0
[...]
mlx5e_psp_unregister+0x26/0x50 [mlx5_core]
mlx5e_nic_cleanup+0x26/0x90 [mlx5_core]
mlx5e_remove+0xe6/0x1f0 [mlx5_core]
auxiliary_bus_remove+0x18/0x30
device_release_driver_internal+0x194/0x1f0
bus_remove_device+0xc6/0x130
device_del+0x159/0x3c0
mlx5_rescan_drivers_locked+0xbc/0x2a0 [mlx5_core]
[...]
Do not directly remove psp from the _mlx5e_remove path, the PSP cleanup
happens as part of profile cleanup. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't log conflicting inode if it's a dir moved in the current transaction
We can't log a conflicting inode if it's a directory and it was moved
from one parent directory to another parent directory in the current
transaction, as this can result an attempt to have a directory with
two hard links during log replay, one for the old parent directory and
another for the new parent directory.
The following scenario triggers that issue:
1) We have directories "dir1" and "dir2" created in a past transaction.
Directory "dir1" has inode A as its parent directory;
2) We move "dir1" to some other directory;
3) We create a file with the name "dir1" in directory inode A;
4) We fsync the new file. This results in logging the inode of the new file
and the inode for the directory "dir1" that was previously moved in the
current transaction. So the log tree has the INODE_REF item for the
new location of "dir1";
5) We move the new file to some other directory. This results in updating
the log tree to included the new INODE_REF for the new location of the
file and removes the INODE_REF for the old location. This happens
during the rename when we call btrfs_log_new_name();
6) We fsync the file, and that persists the log tree changes done in the
previous step (btrfs_log_new_name() only updates the log tree in
memory);
7) We have a power failure;
8) Next time the fs is mounted, log replay happens and when processing
the inode for directory "dir1" we find a new INODE_REF and add that
link, but we don't remove the old link of the inode since we have
not logged the old parent directory of the directory inode "dir1".
As a result after log replay finishes when we trigger writeback of the
subvolume tree's extent buffers, the tree check will detect that we have
a directory a hard link count of 2 and we get a mount failure.
The errors and stack traces reported in dmesg/syslog are like this:
[ 3845.729764] BTRFS info (device dm-0): start tree-log replay
[ 3845.730304] page: refcount:3 mapcount:0 mapping:000000005c8a3027 index:0x1d00 pfn:0x11510c
[ 3845.731236] memcg:ffff9264c02f4e00
[ 3845.731751] aops:btree_aops [btrfs] ino:1
[ 3845.732300] flags: 0x17fffc00000400a(uptodate|private|writeback|node=0|zone=2|lastcpupid=0x1ffff)
[ 3845.733346] raw: 017fffc00000400a 0000000000000000 dead000000000122 ffff9264d978aea8
[ 3845.734265] raw: 0000000000001d00 ffff92650e6d4738 00000003ffffffff ffff9264c02f4e00
[ 3845.735305] page dumped because: eb page dump
[ 3845.735981] BTRFS critical (device dm-0): corrupt leaf: root=5 block=30408704 slot=6 ino=257, invalid nlink: has 2 expect no more than 1 for dir
[ 3845.737786] BTRFS info (device dm-0): leaf 30408704 gen 10 total ptrs 17 free space 14881 owner 5
[ 3845.737789] BTRFS info (device dm-0): refs 4 lock_owner 0 current 30701
[ 3845.737792] item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160
[ 3845.737794] inode generation 3 transid 9 size 16 nbytes 16384
[ 3845.737795] block group 0 mode 40755 links 1 uid 0 gid 0
[ 3845.737797] rdev 0 sequence 2 flags 0x0
[ 3845.737798] atime 1764259517.0
[ 3845.737800] ctime 1764259517.572889464
[ 3845.737801] mtime 1764259517.572889464
[ 3845.737802] otime 1764259517.0
[ 3845.737803] item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12
[ 3845.737805] index 0 name_len 2
[ 3845.737807] item 2 key (256 DIR_ITEM 2363071922) itemoff 16077 itemsize 34
[ 3845.737808] location key (257 1 0) type 2
[ 3845.737810] transid 9 data_len 0 name_len 4
[ 3845.737811] item 3 key (256 DIR_ITEM 2676584006) itemoff 16043 itemsize 34
[ 3845.737813] location key (258 1 0) type 2
[ 3845.737814] transid 9 data_len 0 name_len 4
[ 3845.737815] item 4 key (256 DIR_INDEX 2) itemoff 16009 itemsize 34
[ 3845.737816] location key (257 1 0) type 2
[
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Input: ti_am335x_tsc - fix off-by-one error in wire_order validation
The current validation 'wire_order[i] > ARRAY_SIZE(config_pins)' allows
wire_order[i] to equal ARRAY_SIZE(config_pins), which causes out-of-bounds
access when used as index in 'config_pins[wire_order[i]]'.
Since config_pins has 4 elements (indices 0-3), the valid range for
wire_order should be 0-3. Fix the off-by-one error by using >= instead
of > in the validation check. |
| In the Linux kernel, the following vulnerability has been resolved:
net/hsr: fix NULL pointer dereference in prp_get_untagged_frame()
prp_get_untagged_frame() calls __pskb_copy() to create frame->skb_std
but doesn't check if the allocation failed. If __pskb_copy() returns
NULL, skb_clone() is called with a NULL pointer, causing a crash:
Oops: general protection fault, probably for non-canonical address 0xdffffc000000000f: 0000 [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000078-0x000000000000007f]
CPU: 0 UID: 0 PID: 5625 Comm: syz.1.18 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:skb_clone+0xd7/0x3a0 net/core/skbuff.c:2041
Code: 03 42 80 3c 20 00 74 08 4c 89 f7 e8 23 29 05 f9 49 83 3e 00 0f 85 a0 01 00 00 e8 94 dd 9d f8 48 8d 6b 7e 49 89 ee 49 c1 ee 03 <43> 0f b6 04 26 84 c0 0f 85 d1 01 00 00 44 0f b6 7d 00 41 83 e7 0c
RSP: 0018:ffffc9000d00f200 EFLAGS: 00010207
RAX: ffffffff892235a1 RBX: 0000000000000000 RCX: ffff88803372a480
RDX: 0000000000000000 RSI: 0000000000000820 RDI: 0000000000000000
RBP: 000000000000007e R08: ffffffff8f7d0f77 R09: 1ffffffff1efa1ee
R10: dffffc0000000000 R11: fffffbfff1efa1ef R12: dffffc0000000000
R13: 0000000000000820 R14: 000000000000000f R15: ffff88805144cc00
FS: 0000555557f6d500(0000) GS:ffff88808d72f000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000555581d35808 CR3: 000000005040e000 CR4: 0000000000352ef0
Call Trace:
<TASK>
hsr_forward_do net/hsr/hsr_forward.c:-1 [inline]
hsr_forward_skb+0x1013/0x2860 net/hsr/hsr_forward.c:741
hsr_handle_frame+0x6ce/0xa70 net/hsr/hsr_slave.c:84
__netif_receive_skb_core+0x10b9/0x4380 net/core/dev.c:5966
__netif_receive_skb_one_core net/core/dev.c:6077 [inline]
__netif_receive_skb+0x72/0x380 net/core/dev.c:6192
netif_receive_skb_internal net/core/dev.c:6278 [inline]
netif_receive_skb+0x1cb/0x790 net/core/dev.c:6337
tun_rx_batched+0x1b9/0x730 drivers/net/tun.c:1485
tun_get_user+0x2b65/0x3e90 drivers/net/tun.c:1953
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f0449f8e1ff
Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 f9 92 02 00 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 4c 93 02 00 48
RSP: 002b:00007ffd7ad94c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007f044a1e5fa0 RCX: 00007f0449f8e1ff
RDX: 000000000000003e RSI: 0000200000000500 RDI: 00000000000000c8
RBP: 00007ffd7ad94d20 R08: 0000000000000000 R09: 0000000000000000
R10: 000000000000003e R11: 0000000000000293 R12: 0000000000000001
R13: 00007f044a1e5fa0 R14: 00007f044a1e5fa0 R15: 0000000000000003
</TASK>
Add a NULL check immediately after __pskb_copy() to handle allocation
failures gracefully. |
| In the Linux kernel, the following vulnerability has been resolved:
net/handshake: duplicate handshake cancellations leak socket
When a handshake request is cancelled it is removed from the
handshake_net->hn_requests list, but it is still present in the
handshake_rhashtbl until it is destroyed.
If a second cancellation request arrives for the same handshake request,
then remove_pending() will return false... and assuming
HANDSHAKE_F_REQ_COMPLETED isn't set in req->hr_flags, we'll continue
processing through the out_true label, where we put another reference on
the sock and a refcount underflow occurs.
This can happen for example if a handshake times out - particularly if
the SUNRPC client sends the AUTH_TLS probe to the server but doesn't
follow it up with the ClientHello due to a problem with tlshd. When the
timeout is hit on the server, the server will send a FIN, which triggers
a cancellation request via xs_reset_transport(). When the timeout is
hit on the client, another cancellation request happens via
xs_tls_handshake_sync().
Add a test_and_set_bit(HANDSHAKE_F_REQ_COMPLETED) in the pending cancel
path so duplicate cancels can be detected. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix missing hfs_bnode_get() in __hfs_bnode_create
When sync() and link() are called concurrently, both threads may
enter hfs_bnode_find() without finding the node in the hash table
and proceed to create it.
Thread A:
hfsplus_write_inode()
-> hfsplus_write_system_inode()
-> hfs_btree_write()
-> hfs_bnode_find(tree, 0)
-> __hfs_bnode_create(tree, 0)
Thread B:
hfsplus_create_cat()
-> hfs_brec_insert()
-> hfs_bnode_split()
-> hfs_bmap_alloc()
-> hfs_bnode_find(tree, 0)
-> __hfs_bnode_create(tree, 0)
In this case, thread A creates the bnode, sets refcnt=1, and hashes it.
Thread B also tries to create the same bnode, notices it has already
been inserted, drops its own instance, and uses the hashed one without
getting the node.
```
node2 = hfs_bnode_findhash(tree, cnid);
if (!node2) { <- Thread A
hash = hfs_bnode_hash(cnid);
node->next_hash = tree->node_hash[hash];
tree->node_hash[hash] = node;
tree->node_hash_cnt++;
} else { <- Thread B
spin_unlock(&tree->hash_lock);
kfree(node);
wait_event(node2->lock_wq,
!test_bit(HFS_BNODE_NEW, &node2->flags));
return node2;
}
```
However, hfs_bnode_find() requires each call to take a reference.
Here both threads end up setting refcnt=1. When they later put the node,
this triggers:
BUG_ON(!atomic_read(&node->refcnt))
In this scenario, Thread B in fact finds the node in the hash table
rather than creating a new one, and thus must take a reference.
Fix this by calling hfs_bnode_get() when reusing a bnode newly created by
another thread to ensure the refcount is updated correctly.
A similar bug was fixed in HFS long ago in commit
a9dc087fd3c4 ("fix missing hfs_bnode_get() in __hfs_bnode_create")
but the same issue remained in HFS+ until now. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: fsl-cpm: Check length parity before switching to 16 bit mode
Commit fc96ec826bce ("spi: fsl-cpm: Use 16 bit mode for large transfers
with even size") failed to make sure that the size is really even
before switching to 16 bit mode. Until recently the problem went
unnoticed because kernfs uses a pre-allocated bounce buffer of size
PAGE_SIZE for reading EEPROM.
But commit 8ad6249c51d0 ("eeprom: at25: convert to spi-mem API")
introduced an additional dynamically allocated bounce buffer whose size
is exactly the size of the transfer, leading to a buffer overrun in
the fsl-cpm driver when that size is odd.
Add the missing length parity verification and remain in 8 bit mode
when the length is not even. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid updating compression context during writeback
Bai, Shuangpeng <sjb7183@psu.edu> reported a bug as below:
Oops: divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 11441 Comm: syz.0.46 Not tainted 6.17.0 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:f2fs_all_cluster_page_ready+0x106/0x550 fs/f2fs/compress.c:857
Call Trace:
<TASK>
f2fs_write_cache_pages fs/f2fs/data.c:3078 [inline]
__f2fs_write_data_pages fs/f2fs/data.c:3290 [inline]
f2fs_write_data_pages+0x1c19/0x3600 fs/f2fs/data.c:3317
do_writepages+0x38e/0x640 mm/page-writeback.c:2634
filemap_fdatawrite_wbc mm/filemap.c:386 [inline]
__filemap_fdatawrite_range mm/filemap.c:419 [inline]
file_write_and_wait_range+0x2ba/0x3e0 mm/filemap.c:794
f2fs_do_sync_file+0x6e6/0x1b00 fs/f2fs/file.c:294
generic_write_sync include/linux/fs.h:3043 [inline]
f2fs_file_write_iter+0x76e/0x2700 fs/f2fs/file.c:5259
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x7e9/0xe00 fs/read_write.c:686
ksys_write+0x19d/0x2d0 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xf7/0x470 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The bug was triggered w/ below race condition:
fsync setattr ioctl
- f2fs_do_sync_file
- file_write_and_wait_range
- f2fs_write_cache_pages
: inode is non-compressed
: cc.cluster_size =
F2FS_I(inode)->i_cluster_size = 0
- tag_pages_for_writeback
- f2fs_setattr
- truncate_setsize
- f2fs_truncate
- f2fs_fileattr_set
- f2fs_setflags_common
- set_compress_context
: F2FS_I(inode)->i_cluster_size = 4
: set_inode_flag(inode, FI_COMPRESSED_FILE)
- f2fs_compressed_file
: return true
- f2fs_all_cluster_page_ready
: "pgidx % cc->cluster_size" trigger dividing 0 issue
Let's change as below to fix this issue:
- introduce a new atomic type variable .writeback in structure f2fs_inode_info
to track the number of threads which calling f2fs_write_cache_pages().
- use .i_sem lock to protect .writeback update.
- check .writeback before update compression context in f2fs_setflags_common()
to avoid race w/ ->writepages. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix kernel BUG in ocfs2_find_victim_chain
syzbot reported a kernel BUG in ocfs2_find_victim_chain() because the
`cl_next_free_rec` field of the allocation chain list (next free slot in
the chain list) is 0, triggring the BUG_ON(!cl->cl_next_free_rec)
condition in ocfs2_find_victim_chain() and panicking the kernel.
To fix this, an if condition is introduced in ocfs2_claim_suballoc_bits(),
just before calling ocfs2_find_victim_chain(), the code block in it being
executed when either of the following conditions is true:
1. `cl_next_free_rec` is equal to 0, indicating that there are no free
chains in the allocation chain list
2. `cl_next_free_rec` is greater than `cl_count` (the total number of
chains in the allocation chain list)
Either of them being true is indicative of the fact that there are no
chains left for usage.
This is addressed using ocfs2_error(), which prints
the error log for debugging purposes, rather than panicking the kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix XDP_TX path
For XDP_TX action in bnxt_rx_xdp(), clearing of the event flags is not
correct. __bnxt_poll_work() -> bnxt_rx_pkt() -> bnxt_rx_xdp() may be
looping within NAPI and some event flags may be set in earlier
iterations. In particular, if BNXT_TX_EVENT is set earlier indicating
some XDP_TX packets are ready and pending, it will be cleared if it is
XDP_TX action again. Normally, we will set BNXT_TX_EVENT again when we
successfully call __bnxt_xmit_xdp(). But if the TX ring has no more
room, the flag will not be set. This will cause the TX producer to be
ahead but the driver will not hit the TX doorbell.
For multi-buf XDP_TX, there is no need to clear the event flags and set
BNXT_AGG_EVENT. The BNXT_AGG_EVENT flag should have been set earlier in
bnxt_rx_pkt().
The visible symptom of this is that the RX ring associated with the
TX XDP ring will eventually become empty and all packets will be dropped.
Because this condition will cause the driver to not refill the RX ring
seeing that the TX ring has forever pending XDP_TX packets.
The fix is to only clear BNXT_RX_EVENT when we have successfully
called __bnxt_xmit_xdp(). |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix return value of f2fs_recover_fsync_data()
With below scripts, it will trigger panic in f2fs:
mkfs.f2fs -f /dev/vdd
mount /dev/vdd /mnt/f2fs
touch /mnt/f2fs/foo
sync
echo 111 >> /mnt/f2fs/foo
f2fs_io fsync /mnt/f2fs/foo
f2fs_io shutdown 2 /mnt/f2fs
umount /mnt/f2fs
mount -o ro,norecovery /dev/vdd /mnt/f2fs
or
mount -o ro,disable_roll_forward /dev/vdd /mnt/f2fs
F2FS-fs (vdd): f2fs_recover_fsync_data: recovery fsync data, check_only: 0
F2FS-fs (vdd): Mounted with checkpoint version = 7f5c361f
F2FS-fs (vdd): Stopped filesystem due to reason: 0
F2FS-fs (vdd): f2fs_recover_fsync_data: recovery fsync data, check_only: 1
Filesystem f2fs get_tree() didn't set fc->root, returned 1
------------[ cut here ]------------
kernel BUG at fs/super.c:1761!
Oops: invalid opcode: 0000 [#1] SMP PTI
CPU: 3 UID: 0 PID: 722 Comm: mount Not tainted 6.18.0-rc2+ #721 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:vfs_get_tree.cold+0x18/0x1a
Call Trace:
<TASK>
fc_mount+0x13/0xa0
path_mount+0x34e/0xc50
__x64_sys_mount+0x121/0x150
do_syscall_64+0x84/0x800
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fa6cc126cfe
The root cause is we missed to handle error number returned from
f2fs_recover_fsync_data() when mounting image w/ ro,norecovery or
ro,disable_roll_forward mount option, result in returning a positive
error number to vfs_get_tree(), fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
inet: frags: flush pending skbs in fqdir_pre_exit()
We have been seeing occasional deadlocks on pernet_ops_rwsem since
September in NIPA. The stuck task was usually modprobe (often loading
a driver like ipvlan), trying to take the lock as a Writer.
lockdep does not track readers for rwsems so the read wasn't obvious
from the reports.
On closer inspection the Reader holding the lock was conntrack looping
forever in nf_conntrack_cleanup_net_list(). Based on past experience
with occasional NIPA crashes I looked thru the tests which run before
the crash and noticed that the crash follows ip_defrag.sh. An immediate
red flag. Scouring thru (de)fragmentation queues reveals skbs sitting
around, holding conntrack references.
The problem is that since conntrack depends on nf_defrag_ipv6,
nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its
netns exit hooks run _after_ conntrack's netns exit hook.
Flush all fragment queue SKBs during fqdir_pre_exit() to release
conntrack references before conntrack cleanup runs. Also flush
the queues in timer expiry handlers when they discover fqdir->dead
is set, in case packet sneaks in while we're running the pre_exit
flush.
The commit under Fixes is not exactly the culprit, but I think
previously the timer firing would eventually unblock the spinning
conntrack. |