| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix reference count leak when using error routes with nexthop objects
When a nexthop object is deleted, it is marked as dead and then
fib_table_flush() is called to flush all the routes that are using the
dead nexthop.
The current logic in fib_table_flush() is to only flush error routes
(e.g., blackhole) when it is called as part of network namespace
dismantle (i.e., with flush_all=true). Therefore, error routes are not
flushed when their nexthop object is deleted:
# ip link add name dummy1 up type dummy
# ip nexthop add id 1 dev dummy1
# ip route add 198.51.100.1/32 nhid 1
# ip route add blackhole 198.51.100.2/32 nhid 1
# ip nexthop del id 1
# ip route show
blackhole 198.51.100.2 nhid 1 dev dummy1
As such, they keep holding a reference on the nexthop object which in
turn holds a reference on the nexthop device, resulting in a reference
count leak:
# ip link del dev dummy1
[ 70.516258] unregister_netdevice: waiting for dummy1 to become free. Usage count = 2
Fix by flushing error routes when their nexthop is marked as dead.
IPv6 does not suffer from this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
ip6_gre: make ip6gre_header() robust
Over the years, syzbot found many ways to crash the kernel
in ip6gre_header() [1].
This involves team or bonding drivers ability to dynamically
change their dev->needed_headroom and/or dev->hard_header_len
In this particular crash mld_newpack() allocated an skb
with a too small reserve/headroom, and by the time mld_sendpack()
was called, syzbot managed to attach an ip6gre device.
[1]
skbuff: skb_under_panic: text:ffffffff8a1d69a8 len:136 put:40 head:ffff888059bc7000 data:ffff888059bc6fe8 tail:0x70 end:0x6c0 dev:team0
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:213 !
<TASK>
skb_under_panic net/core/skbuff.c:223 [inline]
skb_push+0xc3/0xe0 net/core/skbuff.c:2641
ip6gre_header+0xc8/0x790 net/ipv6/ip6_gre.c:1371
dev_hard_header include/linux/netdevice.h:3436 [inline]
neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618
neigh_output include/net/neighbour.h:556 [inline]
ip6_finish_output2+0xfb3/0x1480 net/ipv6/ip6_output.c:136
__ip6_finish_output net/ipv6/ip6_output.c:-1 [inline]
ip6_finish_output+0x234/0x7d0 net/ipv6/ip6_output.c:220
NF_HOOK_COND include/linux/netfilter.h:307 [inline]
ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247
NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318
mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855
mld_send_cr net/ipv6/mcast.c:2154 [inline]
mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl()
In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping
metrics_lock. Since this lock protects the lifetime of oa_config, an
attacker could guess the id and call xe_oa_remove_config_ioctl() with
perfect timing, freeing oa_config before we dereference it, leading to
a potential use-after-free.
Fix this by caching the id in a local variable while holding the lock.
v2: (Matt A)
- Dropped mutex_unlock(&oa->metrics_lock) ordering change from
xe_oa_remove_config_ioctl()
(cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: 8192cu: fix tid out of range in rtl92cu_tx_fill_desc()
TID getting from ieee80211_get_tid() might be out of range of array size
of sta_entry->tids[], so check TID is less than MAX_TID_COUNT. Othwerwise,
UBSAN warn:
UBSAN: array-index-out-of-bounds in drivers/net/wireless/realtek/rtlwifi/rtl8192cu/trx.c:514:30
index 10 is out of range for type 'rtl_tid_data [9]' |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix out-of-bounds array access in ACPI package parsing
The hp_populate_*_elements_from_package() functions in the hp-bioscfg
driver contain out-of-bounds array access vulnerabilities.
These functions parse ACPI packages into internal data structures using
a for loop with index variable 'elem' that iterates through
enum_obj/integer_obj/order_obj/password_obj/string_obj arrays.
When processing multi-element fields like PREREQUISITES and
ENUM_POSSIBLE_VALUES, these functions read multiple consecutive array
elements using expressions like 'enum_obj[elem + reqs]' and
'enum_obj[elem + pos_values]' within nested loops.
The bug is that the bounds check only validated elem, but did not consider
the additional offset when accessing elem + reqs or elem + pos_values.
The fix changes the bounds check to validate the actual accessed index. |
| An insufficient input validation vulnerability in NETGEAR Orbi devices'
DHCPv6 functionality allows network adjacent attackers authenticated
over WiFi or on LAN to execute OS command injections on the router.
DHCPv6 is not enabled by default. |
| An authentication bypass vulnerability in NETGEAR Orbi devices allows
users connected to the local network to access the router web interface
as an admin. |
| Sandbox escape due to incorrect boundary conditions in the Graphics: CanvasWebGL component. This vulnerability affects Firefox < 147 and Firefox ESR < 140.7. |
| Information disclosure in the Networking component. This vulnerability affects Firefox < 147 and Firefox ESR < 140.7. |
| Use-after-free in the JavaScript: GC component. This vulnerability affects Firefox < 147 and Firefox ESR < 140.7. |
| Spoofing issue in the DOM: Copy & Paste and Drag & Drop component. This vulnerability affects Firefox < 147 and Firefox ESR < 140.7. |
| Memory safety bugs present in Firefox ESR 140.6, Thunderbird ESR 140.6, Firefox 146 and Thunderbird 146. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 147 and Firefox ESR < 140.7. |
| Memory safety bugs present in Firefox 146 and Thunderbird 146. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 147. |
| Improper Neutralization of Special Elements used in a Command ('Command Injection') vulnerability in Vivotek Affected device model numbers are FD8365, FD8365v2, FD9165, FD9171, FD9187, FD9189, FD9365, FD9371, FD9381, FD9387, FD9389, FD9391,FE9180,FE9181, FE9191, FE9381, FE9382, FE9391, FE9582, IB9365, IB93587LPR, IB9371,IB9381, IB9387, IB9389, IB939,IP9165,IP9171, IP9172, IP9181, IP9191, IT9389, MA9321, MA9322, MS9321, MS9390, TB9330 (Firmware modules) allows OS Command Injection.This issue affects Affected device model numbers are FD8365, FD8365v2, FD9165, FD9171, FD9187, FD9189, FD9365, FD9371, FD9381, FD9387, FD9389, FD9391,FE9180,FE9181, FE9191, FE9381, FE9382, FE9391, FE9582, IB9365, IB93587LPR, IB9371,IB9381, IB9387, IB9389, IB939,IP9165,IP9171, IP9172, IP9181, IP9191, IT9389, MA9321, MA9322, MS9321, MS9390, TB9330: 0100a, 0106a, 0106b, 0107a, 0107b_1, 0109a, 0112a, 0113a, 0113d, 0117b, 0119e, 0120b, 0121, 0121d, 0121d_48573_1, 0122e, 0124d_48573_1, 012501, 012502, 0125c. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix kernel BUG in ocfs2_find_victim_chain
syzbot reported a kernel BUG in ocfs2_find_victim_chain() because the
`cl_next_free_rec` field of the allocation chain list (next free slot in
the chain list) is 0, triggring the BUG_ON(!cl->cl_next_free_rec)
condition in ocfs2_find_victim_chain() and panicking the kernel.
To fix this, an if condition is introduced in ocfs2_claim_suballoc_bits(),
just before calling ocfs2_find_victim_chain(), the code block in it being
executed when either of the following conditions is true:
1. `cl_next_free_rec` is equal to 0, indicating that there are no free
chains in the allocation chain list
2. `cl_next_free_rec` is greater than `cl_count` (the total number of
chains in the allocation chain list)
Either of them being true is indicative of the fact that there are no
chains left for usage.
This is addressed using ocfs2_error(), which prints
the error log for debugging purposes, rather than panicking the kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
net/hsr: fix NULL pointer dereference in prp_get_untagged_frame()
prp_get_untagged_frame() calls __pskb_copy() to create frame->skb_std
but doesn't check if the allocation failed. If __pskb_copy() returns
NULL, skb_clone() is called with a NULL pointer, causing a crash:
Oops: general protection fault, probably for non-canonical address 0xdffffc000000000f: 0000 [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000078-0x000000000000007f]
CPU: 0 UID: 0 PID: 5625 Comm: syz.1.18 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:skb_clone+0xd7/0x3a0 net/core/skbuff.c:2041
Code: 03 42 80 3c 20 00 74 08 4c 89 f7 e8 23 29 05 f9 49 83 3e 00 0f 85 a0 01 00 00 e8 94 dd 9d f8 48 8d 6b 7e 49 89 ee 49 c1 ee 03 <43> 0f b6 04 26 84 c0 0f 85 d1 01 00 00 44 0f b6 7d 00 41 83 e7 0c
RSP: 0018:ffffc9000d00f200 EFLAGS: 00010207
RAX: ffffffff892235a1 RBX: 0000000000000000 RCX: ffff88803372a480
RDX: 0000000000000000 RSI: 0000000000000820 RDI: 0000000000000000
RBP: 000000000000007e R08: ffffffff8f7d0f77 R09: 1ffffffff1efa1ee
R10: dffffc0000000000 R11: fffffbfff1efa1ef R12: dffffc0000000000
R13: 0000000000000820 R14: 000000000000000f R15: ffff88805144cc00
FS: 0000555557f6d500(0000) GS:ffff88808d72f000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000555581d35808 CR3: 000000005040e000 CR4: 0000000000352ef0
Call Trace:
<TASK>
hsr_forward_do net/hsr/hsr_forward.c:-1 [inline]
hsr_forward_skb+0x1013/0x2860 net/hsr/hsr_forward.c:741
hsr_handle_frame+0x6ce/0xa70 net/hsr/hsr_slave.c:84
__netif_receive_skb_core+0x10b9/0x4380 net/core/dev.c:5966
__netif_receive_skb_one_core net/core/dev.c:6077 [inline]
__netif_receive_skb+0x72/0x380 net/core/dev.c:6192
netif_receive_skb_internal net/core/dev.c:6278 [inline]
netif_receive_skb+0x1cb/0x790 net/core/dev.c:6337
tun_rx_batched+0x1b9/0x730 drivers/net/tun.c:1485
tun_get_user+0x2b65/0x3e90 drivers/net/tun.c:1953
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f0449f8e1ff
Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 f9 92 02 00 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 4c 93 02 00 48
RSP: 002b:00007ffd7ad94c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007f044a1e5fa0 RCX: 00007f0449f8e1ff
RDX: 000000000000003e RSI: 0000200000000500 RDI: 00000000000000c8
RBP: 00007ffd7ad94d20 R08: 0000000000000000 R09: 0000000000000000
R10: 000000000000003e R11: 0000000000000293 R12: 0000000000000001
R13: 00007f044a1e5fa0 R14: 00007f044a1e5fa0 R15: 0000000000000003
</TASK>
Add a NULL check immediately after __pskb_copy() to handle allocation
failures gracefully. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: ti_am335x_tsc - fix off-by-one error in wire_order validation
The current validation 'wire_order[i] > ARRAY_SIZE(config_pins)' allows
wire_order[i] to equal ARRAY_SIZE(config_pins), which causes out-of-bounds
access when used as index in 'config_pins[wire_order[i]]'.
Since config_pins has 4 elements (indices 0-3), the valid range for
wire_order should be 0-3. Fix the off-by-one error by using >= instead
of > in the validation check. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: skip lock-range check on equal size to avoid size==0 underflow
When size equals the current i_size (including 0), the code used to call
check_lock_range(filp, i_size, size - 1, WRITE), which computes `size - 1`
and can underflow for size==0. Skip the equal case. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix io-uring list corruption for terminated non-committed requests
When a request is terminated before it has been committed, the request
is not removed from the queue's list. This leaves a dangling list entry
that leads to list corruption and use-after-free issues.
Remove the request from the queue's list for terminated non-committed
requests. |
| In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: initialize local pointers upon transfer of memory ownership
vidtv_channel_si_init() creates a temporary list (program, service, event)
and ownership of the memory itself is transferred to the PAT/SDT/EIT
tables through vidtv_psi_pat_program_assign(),
vidtv_psi_sdt_service_assign(), vidtv_psi_eit_event_assign().
The problem here is that the local pointer where the memory ownership
transfer was completed is not initialized to NULL. This causes the
vidtv_psi_pmt_create_sec_for_each_pat_entry() function to fail, and
in the flow that jumps to free_eit, the memory that was freed by
vidtv_psi_*_table_destroy() can be accessed again by
vidtv_psi_*_event_destroy() due to the uninitialized local pointer, so it
is freed once again.
Therefore, to prevent use-after-free and double-free vulnerability,
local pointers must be initialized to NULL when transferring memory
ownership. |