Search

Search Results (327568 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68787 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: netrom: Fix memory leak in nr_sendmsg() syzbot reported a memory leak [1]. When function sock_alloc_send_skb() return NULL in nr_output(), the original skb is not freed, which was allocated in nr_sendmsg(). Fix this by freeing it before return. [1] BUG: memory leak unreferenced object 0xffff888129f35500 (size 240): comm "syz.0.17", pid 6119, jiffies 4294944652 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 10 52 28 81 88 ff ff ..........R(.... backtrace (crc 1456a3e4): kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline] slab_post_alloc_hook mm/slub.c:4983 [inline] slab_alloc_node mm/slub.c:5288 [inline] kmem_cache_alloc_node_noprof+0x36f/0x5e0 mm/slub.c:5340 __alloc_skb+0x203/0x240 net/core/skbuff.c:660 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0x69/0x3f0 net/core/skbuff.c:6671 sock_alloc_send_pskb+0x379/0x3e0 net/core/sock.c:2965 sock_alloc_send_skb include/net/sock.h:1859 [inline] nr_sendmsg+0x287/0x450 net/netrom/af_netrom.c:1105 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg net/socket.c:742 [inline] sock_write_iter+0x293/0x2a0 net/socket.c:1195 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x45d/0x710 fs/read_write.c:686 ksys_write+0x143/0x170 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xa4/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2025-68786 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: skip lock-range check on equal size to avoid size==0 underflow When size equals the current i_size (including 0), the code used to call check_lock_range(filp, i_size, size - 1, WRITE), which computes `size - 1` and can underflow for size==0. Skip the equal case.
CVE-2025-68785 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: fix middle attribute validation in push_nsh() action The push_nsh() action structure looks like this: OVS_ACTION_ATTR_PUSH_NSH(OVS_KEY_ATTR_NSH(OVS_NSH_KEY_ATTR_BASE,...)) The outermost OVS_ACTION_ATTR_PUSH_NSH attribute is OK'ed by the nla_for_each_nested() inside __ovs_nla_copy_actions(). The innermost OVS_NSH_KEY_ATTR_BASE/MD1/MD2 are OK'ed by the nla_for_each_nested() inside nsh_key_put_from_nlattr(). But nothing checks if the attribute in the middle is OK. We don't even check that this attribute is the OVS_KEY_ATTR_NSH. We just do a double unwrap with a pair of nla_data() calls - first time directly while calling validate_push_nsh() and the second time as part of the nla_for_each_nested() macro, which isn't safe, potentially causing invalid memory access if the size of this attribute is incorrect. The failure may not be noticed during validation due to larger netlink buffer, but cause trouble later during action execution where the buffer is allocated exactly to the size: BUG: KASAN: slab-out-of-bounds in nsh_hdr_from_nlattr+0x1dd/0x6a0 [openvswitch] Read of size 184 at addr ffff88816459a634 by task a.out/22624 CPU: 8 UID: 0 PID: 22624 6.18.0-rc7+ #115 PREEMPT(voluntary) Call Trace: <TASK> dump_stack_lvl+0x51/0x70 print_address_description.constprop.0+0x2c/0x390 kasan_report+0xdd/0x110 kasan_check_range+0x35/0x1b0 __asan_memcpy+0x20/0x60 nsh_hdr_from_nlattr+0x1dd/0x6a0 [openvswitch] push_nsh+0x82/0x120 [openvswitch] do_execute_actions+0x1405/0x2840 [openvswitch] ovs_execute_actions+0xd5/0x3b0 [openvswitch] ovs_packet_cmd_execute+0x949/0xdb0 [openvswitch] genl_family_rcv_msg_doit+0x1d6/0x2b0 genl_family_rcv_msg+0x336/0x580 genl_rcv_msg+0x9f/0x130 netlink_rcv_skb+0x11f/0x370 genl_rcv+0x24/0x40 netlink_unicast+0x73e/0xaa0 netlink_sendmsg+0x744/0xbf0 __sys_sendto+0x3d6/0x450 do_syscall_64+0x79/0x2c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> Let's add some checks that the attribute is properly sized and it's the only one attribute inside the action. Technically, there is no real reason for OVS_KEY_ATTR_NSH to be there, as we know that we're pushing an NSH header already, it just creates extra nesting, but that's how uAPI works today. So, keeping as it is.
CVE-2025-68784 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: xfs: fix a UAF problem in xattr repair The xchk_setup_xattr_buf function can allocate a new value buffer, which means that any reference to ab->value before the call could become a dangling pointer. Fix this by moving an assignment to after the buffer setup.
CVE-2025-68783 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-mixer: us16x08: validate meter packet indices get_meter_levels_from_urb() parses the 64-byte meter packets sent by the device and fills the per-channel arrays meter_level[], comp_level[] and master_level[] in struct snd_us16x08_meter_store. Currently the function derives the channel index directly from the meter packet (MUB2(meter_urb, s) - 1) and uses it to index those arrays without validating the range. If the packet contains a negative or out-of-range channel number, the driver may write past the end of these arrays. Introduce a local channel variable and validate it before updating the arrays. We reject negative indices, limit meter_level[] and comp_level[] to SND_US16X08_MAX_CHANNELS, and guard master_level[] updates with ARRAY_SIZE(master_level).
CVE-2025-68782 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: target: Reset t_task_cdb pointer in error case If allocation of cmd->t_task_cdb fails, it remains NULL but is later dereferenced in the 'err' path. In case of error, reset NULL t_task_cdb value to point at the default fixed-size buffer. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-68781 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: phy: fsl-usb: Fix use-after-free in delayed work during device removal The delayed work item otg_event is initialized in fsl_otg_conf() and scheduled under two conditions: 1. When a host controller binds to the OTG controller. 2. When the USB ID pin state changes (cable insertion/removal). A race condition occurs when the device is removed via fsl_otg_remove(): the fsl_otg instance may be freed while the delayed work is still pending or executing. This leads to use-after-free when the work function fsl_otg_event() accesses the already freed memory. The problematic scenario: (detach thread) | (delayed work) fsl_otg_remove() | kfree(fsl_otg_dev) //FREE| fsl_otg_event() | og = container_of(...) //USE | og-> //USE Fix this by calling disable_delayed_work_sync() in fsl_otg_remove() before deallocating the fsl_otg structure. This ensures the delayed work is properly canceled and completes execution prior to memory deallocation. This bug was identified through static analysis.
CVE-2025-68780 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: sched/deadline: only set free_cpus for online runqueues Commit 16b269436b72 ("sched/deadline: Modify cpudl::free_cpus to reflect rd->online") introduced the cpudl_set/clear_freecpu functions to allow the cpu_dl::free_cpus mask to be manipulated by the deadline scheduler class rq_on/offline callbacks so the mask would also reflect this state. Commit 9659e1eeee28 ("sched/deadline: Remove cpu_active_mask from cpudl_find()") removed the check of the cpu_active_mask to save some processing on the premise that the cpudl::free_cpus mask already reflected the runqueue online state. Unfortunately, there are cases where it is possible for the cpudl_clear function to set the free_cpus bit for a CPU when the deadline runqueue is offline. When this occurs while a CPU is connected to the default root domain the flag may retain the bad state after the CPU has been unplugged. Later, a different CPU that is transitioning through the default root domain may push a deadline task to the powered down CPU when cpudl_find sees its free_cpus bit is set. If this happens the task will not have the opportunity to run. One example is outlined here: https://lore.kernel.org/lkml/20250110233010.2339521-1-opendmb@gmail.com Another occurs when the last deadline task is migrated from a CPU that has an offlined runqueue. The dequeue_task member of the deadline scheduler class will eventually call cpudl_clear and set the free_cpus bit for the CPU. This commit modifies the cpudl_clear function to be aware of the online state of the deadline runqueue so that the free_cpus mask can be updated appropriately. It is no longer necessary to manage the mask outside of the cpudl_set/clear functions so the cpudl_set/clear_freecpu functions are removed. In addition, since the free_cpus mask is now only updated under the cpudl lock the code was changed to use the non-atomic __cpumask functions.
CVE-2025-68779 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Avoid unregistering PSP twice PSP is unregistered twice in: _mlx5e_remove -> mlx5e_psp_unregister mlx5e_nic_cleanup -> mlx5e_psp_unregister This leads to a refcount underflow in some conditions: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 2 PID: 1694 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0 [...] mlx5e_psp_unregister+0x26/0x50 [mlx5_core] mlx5e_nic_cleanup+0x26/0x90 [mlx5_core] mlx5e_remove+0xe6/0x1f0 [mlx5_core] auxiliary_bus_remove+0x18/0x30 device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 mlx5_rescan_drivers_locked+0xbc/0x2a0 [mlx5_core] [...] Do not directly remove psp from the _mlx5e_remove path, the PSP cleanup happens as part of profile cleanup.
CVE-2025-68778 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: don't log conflicting inode if it's a dir moved in the current transaction We can't log a conflicting inode if it's a directory and it was moved from one parent directory to another parent directory in the current transaction, as this can result an attempt to have a directory with two hard links during log replay, one for the old parent directory and another for the new parent directory. The following scenario triggers that issue: 1) We have directories "dir1" and "dir2" created in a past transaction. Directory "dir1" has inode A as its parent directory; 2) We move "dir1" to some other directory; 3) We create a file with the name "dir1" in directory inode A; 4) We fsync the new file. This results in logging the inode of the new file and the inode for the directory "dir1" that was previously moved in the current transaction. So the log tree has the INODE_REF item for the new location of "dir1"; 5) We move the new file to some other directory. This results in updating the log tree to included the new INODE_REF for the new location of the file and removes the INODE_REF for the old location. This happens during the rename when we call btrfs_log_new_name(); 6) We fsync the file, and that persists the log tree changes done in the previous step (btrfs_log_new_name() only updates the log tree in memory); 7) We have a power failure; 8) Next time the fs is mounted, log replay happens and when processing the inode for directory "dir1" we find a new INODE_REF and add that link, but we don't remove the old link of the inode since we have not logged the old parent directory of the directory inode "dir1". As a result after log replay finishes when we trigger writeback of the subvolume tree's extent buffers, the tree check will detect that we have a directory a hard link count of 2 and we get a mount failure. The errors and stack traces reported in dmesg/syslog are like this: [ 3845.729764] BTRFS info (device dm-0): start tree-log replay [ 3845.730304] page: refcount:3 mapcount:0 mapping:000000005c8a3027 index:0x1d00 pfn:0x11510c [ 3845.731236] memcg:ffff9264c02f4e00 [ 3845.731751] aops:btree_aops [btrfs] ino:1 [ 3845.732300] flags: 0x17fffc00000400a(uptodate|private|writeback|node=0|zone=2|lastcpupid=0x1ffff) [ 3845.733346] raw: 017fffc00000400a 0000000000000000 dead000000000122 ffff9264d978aea8 [ 3845.734265] raw: 0000000000001d00 ffff92650e6d4738 00000003ffffffff ffff9264c02f4e00 [ 3845.735305] page dumped because: eb page dump [ 3845.735981] BTRFS critical (device dm-0): corrupt leaf: root=5 block=30408704 slot=6 ino=257, invalid nlink: has 2 expect no more than 1 for dir [ 3845.737786] BTRFS info (device dm-0): leaf 30408704 gen 10 total ptrs 17 free space 14881 owner 5 [ 3845.737789] BTRFS info (device dm-0): refs 4 lock_owner 0 current 30701 [ 3845.737792] item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160 [ 3845.737794] inode generation 3 transid 9 size 16 nbytes 16384 [ 3845.737795] block group 0 mode 40755 links 1 uid 0 gid 0 [ 3845.737797] rdev 0 sequence 2 flags 0x0 [ 3845.737798] atime 1764259517.0 [ 3845.737800] ctime 1764259517.572889464 [ 3845.737801] mtime 1764259517.572889464 [ 3845.737802] otime 1764259517.0 [ 3845.737803] item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12 [ 3845.737805] index 0 name_len 2 [ 3845.737807] item 2 key (256 DIR_ITEM 2363071922) itemoff 16077 itemsize 34 [ 3845.737808] location key (257 1 0) type 2 [ 3845.737810] transid 9 data_len 0 name_len 4 [ 3845.737811] item 3 key (256 DIR_ITEM 2676584006) itemoff 16043 itemsize 34 [ 3845.737813] location key (258 1 0) type 2 [ 3845.737814] transid 9 data_len 0 name_len 4 [ 3845.737815] item 4 key (256 DIR_INDEX 2) itemoff 16009 itemsize 34 [ 3845.737816] location key (257 1 0) type 2 [ ---truncated---
CVE-2025-68777 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: ti_am335x_tsc - fix off-by-one error in wire_order validation The current validation 'wire_order[i] > ARRAY_SIZE(config_pins)' allows wire_order[i] to equal ARRAY_SIZE(config_pins), which causes out-of-bounds access when used as index in 'config_pins[wire_order[i]]'. Since config_pins has 4 elements (indices 0-3), the valid range for wire_order should be 0-3. Fix the off-by-one error by using >= instead of > in the validation check.
CVE-2025-68776 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: net/hsr: fix NULL pointer dereference in prp_get_untagged_frame() prp_get_untagged_frame() calls __pskb_copy() to create frame->skb_std but doesn't check if the allocation failed. If __pskb_copy() returns NULL, skb_clone() is called with a NULL pointer, causing a crash: Oops: general protection fault, probably for non-canonical address 0xdffffc000000000f: 0000 [#1] SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000078-0x000000000000007f] CPU: 0 UID: 0 PID: 5625 Comm: syz.1.18 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:skb_clone+0xd7/0x3a0 net/core/skbuff.c:2041 Code: 03 42 80 3c 20 00 74 08 4c 89 f7 e8 23 29 05 f9 49 83 3e 00 0f 85 a0 01 00 00 e8 94 dd 9d f8 48 8d 6b 7e 49 89 ee 49 c1 ee 03 <43> 0f b6 04 26 84 c0 0f 85 d1 01 00 00 44 0f b6 7d 00 41 83 e7 0c RSP: 0018:ffffc9000d00f200 EFLAGS: 00010207 RAX: ffffffff892235a1 RBX: 0000000000000000 RCX: ffff88803372a480 RDX: 0000000000000000 RSI: 0000000000000820 RDI: 0000000000000000 RBP: 000000000000007e R08: ffffffff8f7d0f77 R09: 1ffffffff1efa1ee R10: dffffc0000000000 R11: fffffbfff1efa1ef R12: dffffc0000000000 R13: 0000000000000820 R14: 000000000000000f R15: ffff88805144cc00 FS: 0000555557f6d500(0000) GS:ffff88808d72f000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000555581d35808 CR3: 000000005040e000 CR4: 0000000000352ef0 Call Trace: <TASK> hsr_forward_do net/hsr/hsr_forward.c:-1 [inline] hsr_forward_skb+0x1013/0x2860 net/hsr/hsr_forward.c:741 hsr_handle_frame+0x6ce/0xa70 net/hsr/hsr_slave.c:84 __netif_receive_skb_core+0x10b9/0x4380 net/core/dev.c:5966 __netif_receive_skb_one_core net/core/dev.c:6077 [inline] __netif_receive_skb+0x72/0x380 net/core/dev.c:6192 netif_receive_skb_internal net/core/dev.c:6278 [inline] netif_receive_skb+0x1cb/0x790 net/core/dev.c:6337 tun_rx_batched+0x1b9/0x730 drivers/net/tun.c:1485 tun_get_user+0x2b65/0x3e90 drivers/net/tun.c:1953 tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f0449f8e1ff Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 f9 92 02 00 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 4c 93 02 00 48 RSP: 002b:00007ffd7ad94c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007f044a1e5fa0 RCX: 00007f0449f8e1ff RDX: 000000000000003e RSI: 0000200000000500 RDI: 00000000000000c8 RBP: 00007ffd7ad94d20 R08: 0000000000000000 R09: 0000000000000000 R10: 000000000000003e R11: 0000000000000293 R12: 0000000000000001 R13: 00007f044a1e5fa0 R14: 00007f044a1e5fa0 R15: 0000000000000003 </TASK> Add a NULL check immediately after __pskb_copy() to handle allocation failures gracefully.
CVE-2025-68775 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: net/handshake: duplicate handshake cancellations leak socket When a handshake request is cancelled it is removed from the handshake_net->hn_requests list, but it is still present in the handshake_rhashtbl until it is destroyed. If a second cancellation request arrives for the same handshake request, then remove_pending() will return false... and assuming HANDSHAKE_F_REQ_COMPLETED isn't set in req->hr_flags, we'll continue processing through the out_true label, where we put another reference on the sock and a refcount underflow occurs. This can happen for example if a handshake times out - particularly if the SUNRPC client sends the AUTH_TLS probe to the server but doesn't follow it up with the ClientHello due to a problem with tlshd. When the timeout is hit on the server, the server will send a FIN, which triggers a cancellation request via xs_reset_transport(). When the timeout is hit on the client, another cancellation request happens via xs_tls_handshake_sync(). Add a test_and_set_bit(HANDSHAKE_F_REQ_COMPLETED) in the pending cancel path so duplicate cancels can be detected.
CVE-2025-68774 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix missing hfs_bnode_get() in __hfs_bnode_create When sync() and link() are called concurrently, both threads may enter hfs_bnode_find() without finding the node in the hash table and proceed to create it. Thread A: hfsplus_write_inode() -> hfsplus_write_system_inode() -> hfs_btree_write() -> hfs_bnode_find(tree, 0) -> __hfs_bnode_create(tree, 0) Thread B: hfsplus_create_cat() -> hfs_brec_insert() -> hfs_bnode_split() -> hfs_bmap_alloc() -> hfs_bnode_find(tree, 0) -> __hfs_bnode_create(tree, 0) In this case, thread A creates the bnode, sets refcnt=1, and hashes it. Thread B also tries to create the same bnode, notices it has already been inserted, drops its own instance, and uses the hashed one without getting the node. ``` node2 = hfs_bnode_findhash(tree, cnid); if (!node2) { <- Thread A hash = hfs_bnode_hash(cnid); node->next_hash = tree->node_hash[hash]; tree->node_hash[hash] = node; tree->node_hash_cnt++; } else { <- Thread B spin_unlock(&tree->hash_lock); kfree(node); wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags)); return node2; } ``` However, hfs_bnode_find() requires each call to take a reference. Here both threads end up setting refcnt=1. When they later put the node, this triggers: BUG_ON(!atomic_read(&node->refcnt)) In this scenario, Thread B in fact finds the node in the hash table rather than creating a new one, and thus must take a reference. Fix this by calling hfs_bnode_get() when reusing a bnode newly created by another thread to ensure the refcount is updated correctly. A similar bug was fixed in HFS long ago in commit a9dc087fd3c4 ("fix missing hfs_bnode_get() in __hfs_bnode_create") but the same issue remained in HFS+ until now.
CVE-2025-68773 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: fsl-cpm: Check length parity before switching to 16 bit mode Commit fc96ec826bce ("spi: fsl-cpm: Use 16 bit mode for large transfers with even size") failed to make sure that the size is really even before switching to 16 bit mode. Until recently the problem went unnoticed because kernfs uses a pre-allocated bounce buffer of size PAGE_SIZE for reading EEPROM. But commit 8ad6249c51d0 ("eeprom: at25: convert to spi-mem API") introduced an additional dynamically allocated bounce buffer whose size is exactly the size of the transfer, leading to a buffer overrun in the fsl-cpm driver when that size is odd. Add the missing length parity verification and remain in 8 bit mode when the length is not even.
CVE-2025-68772 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid updating compression context during writeback Bai, Shuangpeng <sjb7183@psu.edu> reported a bug as below: Oops: divide error: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 11441 Comm: syz.0.46 Not tainted 6.17.0 #1 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:f2fs_all_cluster_page_ready+0x106/0x550 fs/f2fs/compress.c:857 Call Trace: <TASK> f2fs_write_cache_pages fs/f2fs/data.c:3078 [inline] __f2fs_write_data_pages fs/f2fs/data.c:3290 [inline] f2fs_write_data_pages+0x1c19/0x3600 fs/f2fs/data.c:3317 do_writepages+0x38e/0x640 mm/page-writeback.c:2634 filemap_fdatawrite_wbc mm/filemap.c:386 [inline] __filemap_fdatawrite_range mm/filemap.c:419 [inline] file_write_and_wait_range+0x2ba/0x3e0 mm/filemap.c:794 f2fs_do_sync_file+0x6e6/0x1b00 fs/f2fs/file.c:294 generic_write_sync include/linux/fs.h:3043 [inline] f2fs_file_write_iter+0x76e/0x2700 fs/f2fs/file.c:5259 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x7e9/0xe00 fs/read_write.c:686 ksys_write+0x19d/0x2d0 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf7/0x470 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f The bug was triggered w/ below race condition: fsync setattr ioctl - f2fs_do_sync_file - file_write_and_wait_range - f2fs_write_cache_pages : inode is non-compressed : cc.cluster_size = F2FS_I(inode)->i_cluster_size = 0 - tag_pages_for_writeback - f2fs_setattr - truncate_setsize - f2fs_truncate - f2fs_fileattr_set - f2fs_setflags_common - set_compress_context : F2FS_I(inode)->i_cluster_size = 4 : set_inode_flag(inode, FI_COMPRESSED_FILE) - f2fs_compressed_file : return true - f2fs_all_cluster_page_ready : "pgidx % cc->cluster_size" trigger dividing 0 issue Let's change as below to fix this issue: - introduce a new atomic type variable .writeback in structure f2fs_inode_info to track the number of threads which calling f2fs_write_cache_pages(). - use .i_sem lock to protect .writeback update. - check .writeback before update compression context in f2fs_setflags_common() to avoid race w/ ->writepages.
CVE-2025-68771 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix kernel BUG in ocfs2_find_victim_chain syzbot reported a kernel BUG in ocfs2_find_victim_chain() because the `cl_next_free_rec` field of the allocation chain list (next free slot in the chain list) is 0, triggring the BUG_ON(!cl->cl_next_free_rec) condition in ocfs2_find_victim_chain() and panicking the kernel. To fix this, an if condition is introduced in ocfs2_claim_suballoc_bits(), just before calling ocfs2_find_victim_chain(), the code block in it being executed when either of the following conditions is true: 1. `cl_next_free_rec` is equal to 0, indicating that there are no free chains in the allocation chain list 2. `cl_next_free_rec` is greater than `cl_count` (the total number of chains in the allocation chain list) Either of them being true is indicative of the fact that there are no chains left for usage. This is addressed using ocfs2_error(), which prints the error log for debugging purposes, rather than panicking the kernel.
CVE-2025-68770 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix XDP_TX path For XDP_TX action in bnxt_rx_xdp(), clearing of the event flags is not correct. __bnxt_poll_work() -> bnxt_rx_pkt() -> bnxt_rx_xdp() may be looping within NAPI and some event flags may be set in earlier iterations. In particular, if BNXT_TX_EVENT is set earlier indicating some XDP_TX packets are ready and pending, it will be cleared if it is XDP_TX action again. Normally, we will set BNXT_TX_EVENT again when we successfully call __bnxt_xmit_xdp(). But if the TX ring has no more room, the flag will not be set. This will cause the TX producer to be ahead but the driver will not hit the TX doorbell. For multi-buf XDP_TX, there is no need to clear the event flags and set BNXT_AGG_EVENT. The BNXT_AGG_EVENT flag should have been set earlier in bnxt_rx_pkt(). The visible symptom of this is that the RX ring associated with the TX XDP ring will eventually become empty and all packets will be dropped. Because this condition will cause the driver to not refill the RX ring seeing that the TX ring has forever pending XDP_TX packets. The fix is to only clear BNXT_RX_EVENT when we have successfully called __bnxt_xmit_xdp().
CVE-2025-68769 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix return value of f2fs_recover_fsync_data() With below scripts, it will trigger panic in f2fs: mkfs.f2fs -f /dev/vdd mount /dev/vdd /mnt/f2fs touch /mnt/f2fs/foo sync echo 111 >> /mnt/f2fs/foo f2fs_io fsync /mnt/f2fs/foo f2fs_io shutdown 2 /mnt/f2fs umount /mnt/f2fs mount -o ro,norecovery /dev/vdd /mnt/f2fs or mount -o ro,disable_roll_forward /dev/vdd /mnt/f2fs F2FS-fs (vdd): f2fs_recover_fsync_data: recovery fsync data, check_only: 0 F2FS-fs (vdd): Mounted with checkpoint version = 7f5c361f F2FS-fs (vdd): Stopped filesystem due to reason: 0 F2FS-fs (vdd): f2fs_recover_fsync_data: recovery fsync data, check_only: 1 Filesystem f2fs get_tree() didn't set fc->root, returned 1 ------------[ cut here ]------------ kernel BUG at fs/super.c:1761! Oops: invalid opcode: 0000 [#1] SMP PTI CPU: 3 UID: 0 PID: 722 Comm: mount Not tainted 6.18.0-rc2+ #721 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:vfs_get_tree.cold+0x18/0x1a Call Trace: <TASK> fc_mount+0x13/0xa0 path_mount+0x34e/0xc50 __x64_sys_mount+0x121/0x150 do_syscall_64+0x84/0x800 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fa6cc126cfe The root cause is we missed to handle error number returned from f2fs_recover_fsync_data() when mounting image w/ ro,norecovery or ro,disable_roll_forward mount option, result in returning a positive error number to vfs_get_tree(), fix it.
CVE-2025-68768 1 Linux 1 Linux Kernel 2026-01-13 N/A
In the Linux kernel, the following vulnerability has been resolved: inet: frags: flush pending skbs in fqdir_pre_exit() We have been seeing occasional deadlocks on pernet_ops_rwsem since September in NIPA. The stuck task was usually modprobe (often loading a driver like ipvlan), trying to take the lock as a Writer. lockdep does not track readers for rwsems so the read wasn't obvious from the reports. On closer inspection the Reader holding the lock was conntrack looping forever in nf_conntrack_cleanup_net_list(). Based on past experience with occasional NIPA crashes I looked thru the tests which run before the crash and noticed that the crash follows ip_defrag.sh. An immediate red flag. Scouring thru (de)fragmentation queues reveals skbs sitting around, holding conntrack references. The problem is that since conntrack depends on nf_defrag_ipv6, nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its netns exit hooks run _after_ conntrack's netns exit hook. Flush all fragment queue SKBs during fqdir_pre_exit() to release conntrack references before conntrack cleanup runs. Also flush the queues in timer expiry handlers when they discover fqdir->dead is set, in case packet sneaks in while we're running the pre_exit flush. The commit under Fixes is not exactly the culprit, but I think previously the timer firing would eventually unblock the spinning conntrack.