| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: af9005: Fix null-ptr-deref in af9005_i2c_xfer
In af9005_i2c_xfer, msg is controlled by user. When msg[i].buf
is null and msg[i].len is zero, former checks on msg[i].buf would be
passed. Malicious data finally reach af9005_i2c_xfer. If accessing
msg[i].buf[0] without sanity check, null ptr deref would happen.
We add check on msg[i].len to prevent crash.
Similar commit:
commit 0ed554fd769a
("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: fix null pointer dereference in ovl_get_acl_rcu()
Following process:
P1 P2
path_openat
link_path_walk
may_lookup
inode_permission(rcu)
ovl_permission
acl_permission_check
check_acl
get_cached_acl_rcu
ovl_get_inode_acl
realinode = ovl_inode_real(ovl_inode)
drop_cache
__dentry_kill(ovl_dentry)
iput(ovl_inode)
ovl_destroy_inode(ovl_inode)
dput(oi->__upperdentry)
dentry_kill(upperdentry)
dentry_unlink_inode
upperdentry->d_inode = NULL
ovl_inode_upper
upperdentry = ovl_i_dentry_upper(ovl_inode)
d_inode(upperdentry) // returns NULL
IS_POSIXACL(realinode) // NULL pointer dereference
, will trigger an null pointer dereference at realinode:
[ 205.472797] BUG: kernel NULL pointer dereference, address:
0000000000000028
[ 205.476701] CPU: 2 PID: 2713 Comm: ls Not tainted
6.3.0-12064-g2edfa098e750-dirty #1216
[ 205.478754] RIP: 0010:do_ovl_get_acl+0x5d/0x300
[ 205.489584] Call Trace:
[ 205.489812] <TASK>
[ 205.490014] ovl_get_inode_acl+0x26/0x30
[ 205.490466] get_cached_acl_rcu+0x61/0xa0
[ 205.490908] generic_permission+0x1bf/0x4e0
[ 205.491447] ovl_permission+0x79/0x1b0
[ 205.491917] inode_permission+0x15e/0x2c0
[ 205.492425] link_path_walk+0x115/0x550
[ 205.493311] path_lookupat.isra.0+0xb2/0x200
[ 205.493803] filename_lookup+0xda/0x240
[ 205.495747] vfs_fstatat+0x7b/0xb0
Fetch a reproducer in [Link].
Use the helper ovl_i_path_realinode() to get realinode and then do
non-nullptr checking. |
| In the Linux kernel, the following vulnerability has been resolved:
samples/bpf: Fix buffer overflow in tcp_basertt
Using sizeof(nv) or strlen(nv)+1 is correct. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix deadlock when converting an inline directory in nojournal mode
In no journal mode, ext4_finish_convert_inline_dir() can self-deadlock
by calling ext4_handle_dirty_dirblock() when it already has taken the
directory lock. There is a similar self-deadlock in
ext4_incvert_inline_data_nolock() for data files which we'll fix at
the same time.
A simple reproducer demonstrating the problem:
mke2fs -Fq -t ext2 -O inline_data -b 4k /dev/vdc 64
mount -t ext4 -o dirsync /dev/vdc /vdc
cd /vdc
mkdir file0
cd file0
touch file0
touch file1
attr -s BurnSpaceInEA -V abcde .
touch supercalifragilisticexpialidocious |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: message: mptlan: Fix use after free bug in mptlan_remove() due to race condition
mptlan_probe() calls mpt_register_lan_device() which initializes the
&priv->post_buckets_task workqueue. A call to
mpt_lan_wake_post_buckets_task() will subsequently start the work.
During driver unload in mptlan_remove() the following race may occur:
CPU0 CPU1
|mpt_lan_post_receive_buckets_work()
mptlan_remove() |
free_netdev() |
kfree(dev); |
|
| dev->mtu
| //use
Fix this by finishing the work prior to cleaning up in mptlan_remove().
[mkp: we really should remove mptlan instead of attempting to fix it] |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: tpm_vtpm_proxy: fix a race condition in /dev/vtpmx creation
/dev/vtpmx is made visible before 'workqueue' is initialized, which can
lead to a memory corruption in the worst case scenario.
Address this by initializing 'workqueue' as the very first step of the
driver initialization. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: ymfpci: Create card with device-managed snd_devm_card_new()
snd_card_ymfpci_remove() was removed in commit c6e6bb5eab74 ("ALSA:
ymfpci: Allocate resources with device-managed APIs"), but the call to
snd_card_new() was not replaced with snd_devm_card_new().
Since there was no longer a call to snd_card_free, unloading the module
would eventually result in Oops:
[697561.532887] BUG: unable to handle page fault for address: ffffffffc0924480
[697561.532893] #PF: supervisor read access in kernel mode
[697561.532896] #PF: error_code(0x0000) - not-present page
[697561.532899] PGD ae1e15067 P4D ae1e15067 PUD ae1e17067 PMD 11a8f5067 PTE 0
[697561.532905] Oops: 0000 [#1] PREEMPT SMP NOPTI
[697561.532909] CPU: 21 PID: 5080 Comm: wireplumber Tainted: G W OE 6.2.7 #1
[697561.532914] Hardware name: System manufacturer System Product Name/TUF GAMING X570-PLUS, BIOS 4408 10/28/2022
[697561.532916] RIP: 0010:try_module_get.part.0+0x1a/0xe0
[697561.532924] Code: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 55 48 89 e5 41 55 41 54 49 89 fc bf 01 00 00 00 e8 56 3c f8 ff <41> 83 3c 24 02 0f 84 96 00 00 00 41 8b 84 24 30 03 00 00 85 c0 0f
[697561.532927] RSP: 0018:ffffbe9b858c3bd8 EFLAGS: 00010246
[697561.532930] RAX: ffff9815d14f1900 RBX: ffff9815c14e6000 RCX: 0000000000000000
[697561.532933] RDX: 0000000000000000 RSI: ffffffffc055092c RDI: ffffffffb3778c1a
[697561.532935] RBP: ffffbe9b858c3be8 R08: 0000000000000040 R09: ffff981a1a741380
[697561.532937] R10: ffffbe9b858c3c80 R11: 00000009d56533a6 R12: ffffffffc0924480
[697561.532939] R13: ffff9823439d8500 R14: 0000000000000025 R15: ffff9815cd109f80
[697561.532942] FS: 00007f13084f1f80(0000) GS:ffff9824aef40000(0000) knlGS:0000000000000000
[697561.532945] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[697561.532947] CR2: ffffffffc0924480 CR3: 0000000145344000 CR4: 0000000000350ee0
[697561.532949] Call Trace:
[697561.532951] <TASK>
[697561.532955] try_module_get+0x13/0x30
[697561.532960] snd_ctl_open+0x61/0x1c0 [snd]
[697561.532976] snd_open+0xb4/0x1e0 [snd]
[697561.532989] chrdev_open+0xc7/0x240
[697561.532995] ? fsnotify_perm.part.0+0x6e/0x160
[697561.533000] ? __pfx_chrdev_open+0x10/0x10
[697561.533005] do_dentry_open+0x169/0x440
[697561.533009] vfs_open+0x2d/0x40
[697561.533012] path_openat+0xa9d/0x10d0
[697561.533017] ? debug_smp_processor_id+0x17/0x20
[697561.533022] ? trigger_load_balance+0x65/0x370
[697561.533026] do_filp_open+0xb2/0x160
[697561.533032] ? _raw_spin_unlock+0x19/0x40
[697561.533036] ? alloc_fd+0xa9/0x190
[697561.533040] do_sys_openat2+0x9f/0x160
[697561.533044] __x64_sys_openat+0x55/0x90
[697561.533048] do_syscall_64+0x3b/0x90
[697561.533052] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[697561.533056] RIP: 0033:0x7f1308a40db4
[697561.533059] Code: 24 20 eb 8f 66 90 44 89 54 24 0c e8 46 68 f8 ff 44 8b 54 24 0c 44 89 e2 48 89 ee 41 89 c0 bf 9c ff ff ff b8 01 01 00 00 0f 05 <48> 3d 00 f0 ff ff 77 32 44 89 c7 89 44 24 0c e8 78 68 f8 ff 8b 44
[697561.533062] RSP: 002b:00007ffcce664450 EFLAGS: 00000293 ORIG_RAX: 0000000000000101
[697561.533066] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f1308a40db4
[697561.533068] RDX: 0000000000080000 RSI: 00007ffcce664690 RDI: 00000000ffffff9c
[697561.533070] RBP: 00007ffcce664690 R08: 0000000000000000 R09: 0000000000000012
[697561.533072] R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000080000
[697561.533074] R13: 00007f13054b069b R14: 0000565209f83200 R15: 0000000000000000
[697561.533078] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
ptp_qoriq: fix memory leak in probe()
Smatch complains that:
drivers/ptp/ptp_qoriq.c ptp_qoriq_probe()
warn: 'base' from ioremap() not released.
Fix this by revising the parameter from 'ptp_qoriq->base' to 'base'.
This is only a bug if ptp_qoriq_init() returns on the
first -ENODEV error path.
For other error paths ptp_qoriq->base and base are the same.
And this change makes the code more readable. |
| In the Linux kernel, the following vulnerability has been resolved:
net: tls: avoid hanging tasks on the tx_lock
syzbot sent a hung task report and Eric explains that adversarial
receiver may keep RWIN at 0 for a long time, so we are not guaranteed
to make forward progress. Thread which took tx_lock and went to sleep
may not release tx_lock for hours. Use interruptible sleep where
possible and reschedule the work if it can't take the lock.
Testing: existing selftest passes |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: refuse to create ea block when umounted
The ea block expansion need to access s_root while it is
already set as NULL when umount is triggered. Refuse this
request to avoid panic. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: meson_sm: fix to avoid potential NULL pointer dereference
of_match_device() may fail and returns a NULL pointer.
Fix this by checking the return value of of_match_device. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Disable preemption in bpf_perf_event_output
The nesting protection in bpf_perf_event_output relies on disabled
preemption, which is guaranteed for kprobes and tracepoints.
However bpf_perf_event_output can be also called from uprobes context
through bpf_prog_run_array_sleepable function which disables migration,
but keeps preemption enabled.
This can cause task to be preempted by another one inside the nesting
protection and lead eventually to two tasks using same perf_sample_data
buffer and cause crashes like:
kernel tried to execute NX-protected page - exploit attempt? (uid: 0)
BUG: unable to handle page fault for address: ffffffff82be3eea
...
Call Trace:
? __die+0x1f/0x70
? page_fault_oops+0x176/0x4d0
? exc_page_fault+0x132/0x230
? asm_exc_page_fault+0x22/0x30
? perf_output_sample+0x12b/0x910
? perf_event_output+0xd0/0x1d0
? bpf_perf_event_output+0x162/0x1d0
? bpf_prog_c6271286d9a4c938_krava1+0x76/0x87
? __uprobe_perf_func+0x12b/0x540
? uprobe_dispatcher+0x2c4/0x430
? uprobe_notify_resume+0x2da/0xce0
? atomic_notifier_call_chain+0x7b/0x110
? exit_to_user_mode_prepare+0x13e/0x290
? irqentry_exit_to_user_mode+0x5/0x30
? asm_exc_int3+0x35/0x40
Fixing this by disabling preemption in bpf_perf_event_output. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix data race on CQP completion stats
CQP completion statistics is read lockesly in irdma_wait_event and
irdma_check_cqp_progress while it can be updated in the completion
thread irdma_sc_ccq_get_cqe_info on another CPU as KCSAN reports.
Make completion statistics an atomic variable to reflect coherent updates
to it. This will also avoid load/store tearing logic bug potentially
possible by compiler optimizations.
[77346.170861] BUG: KCSAN: data-race in irdma_handle_cqp_op [irdma] / irdma_sc_ccq_get_cqe_info [irdma]
[77346.171383] write to 0xffff8a3250b108e0 of 8 bytes by task 9544 on cpu 4:
[77346.171483] irdma_sc_ccq_get_cqe_info+0x27a/0x370 [irdma]
[77346.171658] irdma_cqp_ce_handler+0x164/0x270 [irdma]
[77346.171835] cqp_compl_worker+0x1b/0x20 [irdma]
[77346.172009] process_one_work+0x4d1/0xa40
[77346.172024] worker_thread+0x319/0x700
[77346.172037] kthread+0x180/0x1b0
[77346.172054] ret_from_fork+0x22/0x30
[77346.172136] read to 0xffff8a3250b108e0 of 8 bytes by task 9838 on cpu 2:
[77346.172234] irdma_handle_cqp_op+0xf4/0x4b0 [irdma]
[77346.172413] irdma_cqp_aeq_cmd+0x75/0xa0 [irdma]
[77346.172592] irdma_create_aeq+0x390/0x45a [irdma]
[77346.172769] irdma_rt_init_hw.cold+0x212/0x85d [irdma]
[77346.172944] irdma_probe+0x54f/0x620 [irdma]
[77346.173122] auxiliary_bus_probe+0x66/0xa0
[77346.173137] really_probe+0x140/0x540
[77346.173154] __driver_probe_device+0xc7/0x220
[77346.173173] driver_probe_device+0x5f/0x140
[77346.173190] __driver_attach+0xf0/0x2c0
[77346.173208] bus_for_each_dev+0xa8/0xf0
[77346.173225] driver_attach+0x29/0x30
[77346.173240] bus_add_driver+0x29c/0x2f0
[77346.173255] driver_register+0x10f/0x1a0
[77346.173272] __auxiliary_driver_register+0xbc/0x140
[77346.173287] irdma_init_module+0x55/0x1000 [irdma]
[77346.173460] do_one_initcall+0x7d/0x410
[77346.173475] do_init_module+0x81/0x2c0
[77346.173491] load_module+0x1232/0x12c0
[77346.173506] __do_sys_finit_module+0x101/0x180
[77346.173522] __x64_sys_finit_module+0x3c/0x50
[77346.173538] do_syscall_64+0x39/0x90
[77346.173553] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[77346.173634] value changed: 0x0000000000000094 -> 0x0000000000000095 |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250_bcm7271: fix leak in `brcmuart_probe`
Smatch reports:
drivers/tty/serial/8250/8250_bcm7271.c:1120 brcmuart_probe() warn:
'baud_mux_clk' from clk_prepare_enable() not released on lines: 1032.
The issue is fixed by using a managed clock. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: avoid referencing uninit memory in ath9k_wmi_ctrl_rx
For the reasons also described in commit b383e8abed41 ("wifi: ath9k: avoid
uninit memory read in ath9k_htc_rx_msg()"), ath9k_htc_rx_msg() should
validate pkt_len before accessing the SKB.
For example, the obtained SKB may have been badly constructed with
pkt_len = 8. In this case, the SKB can only contain a valid htc_frame_hdr
but after being processed in ath9k_htc_rx_msg() and passed to
ath9k_wmi_ctrl_rx() endpoint RX handler, it is expected to have a WMI
command header which should be located inside its data payload.
Implement sanity checking inside ath9k_wmi_ctrl_rx(). Otherwise, uninit
memory can be referenced.
Tested on Qualcomm Atheros Communications AR9271 802.11n .
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: bus: verify partner exists in typec_altmode_attention
Some usb hubs will negotiate DisplayPort Alt mode with the device
but will then negotiate a data role swap after entering the alt
mode. The data role swap causes the device to unregister all alt
modes, however the usb hub will still send Attention messages
even after failing to reregister the Alt Mode. type_altmode_attention
currently does not verify whether or not a device's altmode partner
exists, which results in a NULL pointer error when dereferencing
the typec_altmode and typec_altmode_ops belonging to the altmode
partner.
Verify the presence of a device's altmode partner before sending
the Attention message to the Alt Mode driver. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: intel: quark_dts: fix error pointer dereference
If alloc_soc_dts() fails, then we can just return. Trying to free
"soc_dts" will lead to an Oops. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: fix memory leak after finding block group with super blocks
At exclude_super_stripes(), if we happen to find a block group that has
super blocks mapped to it and we are on a zoned filesystem, we error out
as this is not supposed to happen, indicating either a bug or maybe some
memory corruption for example. However we are exiting the function without
freeing the memory allocated for the logical address of the super blocks.
Fix this by freeing the logical address. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Get source vCPUs from source VM for SEV-ES intrahost migration
Fix a goof where KVM tries to grab source vCPUs from the destination VM
when doing intrahost migration. Grabbing the wrong vCPU not only hoses
the guest, it also crashes the host due to the VMSA pointer being left
NULL.
BUG: unable to handle page fault for address: ffffe38687000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 39 PID: 17143 Comm: sev_migrate_tes Tainted: GO 6.5.0-smp--fff2e47e6c3b-next #151
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.28.0 07/10/2023
RIP: 0010:__free_pages+0x15/0xd0
RSP: 0018:ffff923fcf6e3c78 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffe38687000000 RCX: 0000000000000100
RDX: 0000000000000100 RSI: 0000000000000000 RDI: ffffe38687000000
RBP: ffff923fcf6e3c88 R08: ffff923fcafb0000 R09: 0000000000000000
R10: 0000000000000000 R11: ffffffff83619b90 R12: ffff923fa9540000
R13: 0000000000080007 R14: ffff923f6d35d000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff929d0d7c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffe38687000000 CR3: 0000005224c34005 CR4: 0000000000770ee0
PKRU: 55555554
Call Trace:
<TASK>
sev_free_vcpu+0xcb/0x110 [kvm_amd]
svm_vcpu_free+0x75/0xf0 [kvm_amd]
kvm_arch_vcpu_destroy+0x36/0x140 [kvm]
kvm_destroy_vcpus+0x67/0x100 [kvm]
kvm_arch_destroy_vm+0x161/0x1d0 [kvm]
kvm_put_kvm+0x276/0x560 [kvm]
kvm_vm_release+0x25/0x30 [kvm]
__fput+0x106/0x280
____fput+0x12/0x20
task_work_run+0x86/0xb0
do_exit+0x2e3/0x9c0
do_group_exit+0xb1/0xc0
__x64_sys_exit_group+0x1b/0x20
do_syscall_64+0x41/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
CR2: ffffe38687000000 |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: spi-nor: Fix shift-out-of-bounds in spi_nor_set_erase_type
spi_nor_set_erase_type() was used either to set or to mask out an erase
type. When we used it to mask out an erase type a shift-out-of-bounds
was hit:
UBSAN: shift-out-of-bounds in drivers/mtd/spi-nor/core.c:2237:24
shift exponent 4294967295 is too large for 32-bit type 'int'
The setting of the size_{shift, mask} and of the opcode are unnecessary
when the erase size is zero, as throughout the code just the erase size
is considered to determine whether an erase type is supported or not.
Setting the opcode to 0xFF was wrong too as nobody guarantees that 0xFF
is an unused opcode. Thus when masking out an erase type, just set the
erase size to zero. This will fix the shift-out-of-bounds.
[ta: refine changes, new commit message, fix compilation error] |