| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Advanced AJAX Product Filters plugin for WordPress is vulnerable to PHP Object Injection in all versions up to, and including, 3.1.9.6 via deserialization of untrusted input in the shortcode_check function within the Live Composer compatibility layer. This makes it possible for authenticated attackers, with Author-level access and above, to inject a PHP Object. No known POP chain is present in the vulnerable software, which means this vulnerability has no impact unless another plugin or theme containing a POP chain is installed on the site. If a POP chain is present via an additional plugin or theme installed on the target system, it may allow the attacker to perform actions like delete arbitrary files, retrieve sensitive data, or execute code depending on the POP chain present. Note: This vulnerability requires the Live Composer plugin to also be installed and active. |
| A vulnerability has been identified in Rexroth IndraWorks. This flaw allows an attacker to execute arbitrary code on the user's system by parsing a manipulated file containing malicious serialized data. Exploitation requires user interaction, specifically opening a specially crafted file, which then causes the application to deserialize the malicious data, enabling Remote Code Execution (RCE). This can lead to a complete compromise of the system running Rexroth IndraWorks. |
| The YayMail – WooCommerce Email Customizer plugin for WordPress is vulnerable to unauthorized modification of data that can lead to privilege escalation due to a missing capability check on the `yaymail_import_state` AJAX action in all versions up to, and including, 4.3.2. This makes it possible for authenticated attackers, with Shop Manager-level access and above, to update arbitrary options on the WordPress site. This can be leveraged to update the default role for registration to administrator and enable user registration for attackers to gain administrative user access to a vulnerable site. |
| The InteractiveCalculator for WordPress plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'interactivecalculator' shortcode in all versions up to, and including, 1.0.3 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slab: Add alloc_tagging_slab_free_hook for memcg_alloc_abort_single
When CONFIG_MEM_ALLOC_PROFILING_DEBUG is enabled, the following warning
may be noticed:
[ 3959.023862] ------------[ cut here ]------------
[ 3959.023891] alloc_tag was not cleared (got tag for lib/xarray.c:378)
[ 3959.023947] WARNING: ./include/linux/alloc_tag.h:155 at alloc_tag_add+0x128/0x178, CPU#6: mkfs.ntfs/113998
[ 3959.023978] Modules linked in: dns_resolver tun brd overlay exfat btrfs blake2b libblake2b xor xor_neon raid6_pq loop sctp ip6_udp_tunnel udp_tunnel ext4 crc16 mbcache jbd2 rfkill sunrpc vfat fat sg fuse nfnetlink sr_mod virtio_gpu cdrom drm_client_lib virtio_dma_buf drm_shmem_helper drm_kms_helper ghash_ce drm sm4 backlight virtio_net net_failover virtio_scsi failover virtio_console virtio_blk virtio_mmio dm_mirror dm_region_hash dm_log dm_multipath dm_mod i2c_dev aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject]
[ 3959.024170] CPU: 6 UID: 0 PID: 113998 Comm: mkfs.ntfs Kdump: loaded Tainted: G W 6.19.0-rc7+ #7 PREEMPT(voluntary)
[ 3959.024182] Tainted: [W]=WARN
[ 3959.024186] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
[ 3959.024192] pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 3959.024199] pc : alloc_tag_add+0x128/0x178
[ 3959.024207] lr : alloc_tag_add+0x128/0x178
[ 3959.024214] sp : ffff80008b696d60
[ 3959.024219] x29: ffff80008b696d60 x28: 0000000000000000 x27: 0000000000000240
[ 3959.024232] x26: 0000000000000000 x25: 0000000000000240 x24: ffff800085d17860
[ 3959.024245] x23: 0000000000402800 x22: ffff0000c0012dc0 x21: 00000000000002d0
[ 3959.024257] x20: ffff0000e6ef3318 x19: ffff800085ae0410 x18: 0000000000000000
[ 3959.024269] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 3959.024281] x14: 0000000000000000 x13: 0000000000000001 x12: ffff600064101293
[ 3959.024292] x11: 1fffe00064101292 x10: ffff600064101292 x9 : dfff800000000000
[ 3959.024305] x8 : 00009fff9befed6e x7 : ffff000320809493 x6 : 0000000000000001
[ 3959.024316] x5 : ffff000320809490 x4 : ffff600064101293 x3 : ffff800080691838
[ 3959.024328] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000d5bcd640
[ 3959.024340] Call trace:
[ 3959.024346] alloc_tag_add+0x128/0x178 (P)
[ 3959.024355] __alloc_tagging_slab_alloc_hook+0x11c/0x1a8
[ 3959.024362] kmem_cache_alloc_lru_noprof+0x1b8/0x5e8
[ 3959.024369] xas_alloc+0x304/0x4f0
[ 3959.024381] xas_create+0x1e0/0x4a0
[ 3959.024388] xas_store+0x68/0xda8
[ 3959.024395] __filemap_add_folio+0x5b0/0xbd8
[ 3959.024409] filemap_add_folio+0x16c/0x7e0
[ 3959.024416] __filemap_get_folio_mpol+0x2dc/0x9e8
[ 3959.024424] iomap_get_folio+0xfc/0x180
[ 3959.024435] __iomap_get_folio+0x2f8/0x4b8
[ 3959.024441] iomap_write_begin+0x198/0xc18
[ 3959.024448] iomap_write_iter+0x2ec/0x8f8
[ 3959.024454] iomap_file_buffered_write+0x19c/0x290
[ 3959.024461] blkdev_write_iter+0x38c/0x978
[ 3959.024470] vfs_write+0x4d4/0x928
[ 3959.024482] ksys_write+0xfc/0x1f8
[ 3959.024489] __arm64_sys_write+0x74/0xb0
[ 3959.024496] invoke_syscall+0xd4/0x258
[ 3959.024507] el0_svc_common.constprop.0+0xb4/0x240
[ 3959.024514] do_el0_svc+0x48/0x68
[ 3959.024520] el0_svc+0x40/0xf8
[ 3959.024526] el0t_64_sync_handler+0xa0/0xe8
[ 3959.024533] el0t_64_sync+0x1ac/0x1b0
[ 3959.024540] ---[ end trace 0000000000000000 ]---
When __memcg_slab_post_alloc_hook() fails, there are two different
free paths depending on whether size == 1 or size != 1. In the
kmem_cache_free_bulk() path, we do call alloc_tagging_slab_free_hook().
However, in memcg_alloc_abort_single() we don't, the above warning will be
triggered on the next allocation.
Therefore, add alloc_tagging_slab_free_hook() to the
memcg_alloc_abort_single() path. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: loongson-64bit: Fix incorrect NULL check after devm_kcalloc()
Fix incorrect NULL check in loongson_gpio_init_irqchip().
The function checks chip->parent instead of chip->irq.parents. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: trace: fix snapshot deadlock with sbi ecall
If sbi_ecall.c's functions are traceable,
echo "__sbi_ecall:snapshot" > /sys/kernel/tracing/set_ftrace_filter
may get the kernel into a deadlock.
(Functions in sbi_ecall.c are excluded from tracing if
CONFIG_RISCV_ALTERNATIVE_EARLY is set.)
__sbi_ecall triggers a snapshot of the ringbuffer. The snapshot code
raises an IPI interrupt, which results in another call to __sbi_ecall
and another snapshot...
All it takes to get into this endless loop is one initial __sbi_ecall.
On RISC-V systems without SSTC extension, the clock events in
timer-riscv.c issue periodic sbi ecalls, making the problem easy to
trigger.
Always exclude the sbi_ecall.c functions from tracing to fix the
potential deadlock.
sbi ecalls can easiliy be logged via trace events, excluding ecall
functions from function tracing is not a big limitation. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix use-after-free in iscsit_dec_conn_usage_count()
In iscsit_dec_conn_usage_count(), the function calls complete() while
holding the conn->conn_usage_lock. As soon as complete() is invoked, the
waiter (such as iscsit_close_connection()) may wake up and proceed to free
the iscsit_conn structure.
If the waiter frees the memory before the current thread reaches
spin_unlock_bh(), it results in a KASAN slab-use-after-free as the function
attempts to release a lock within the already-freed connection structure.
Fix this by releasing the spinlock before calling complete(). |
| In the Linux kernel, the following vulnerability has been resolved:
x86/vmware: Fix hypercall clobbers
Fedora QA reported the following panic:
BUG: unable to handle page fault for address: 0000000040003e54
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20251119-3.fc43 11/19/2025
RIP: 0010:vmware_hypercall4.constprop.0+0x52/0x90
..
Call Trace:
vmmouse_report_events+0x13e/0x1b0
psmouse_handle_byte+0x15/0x60
ps2_interrupt+0x8a/0xd0
...
because the QEMU VMware mouse emulation is buggy, and clears the top 32
bits of %rdi that the kernel kept a pointer in.
The QEMU vmmouse driver saves and restores the register state in a
"uint32_t data[6];" and as a result restores the state with the high
bits all cleared.
RDI originally contained the value of a valid kernel stack address
(0xff5eeb3240003e54). After the vmware hypercall it now contains
0x40003e54, and we get a page fault as a result when it is dereferenced.
The proper fix would be in QEMU, but this works around the issue in the
kernel to keep old setups working, when old kernels had not happened to
keep any state in %rdi over the hypercall.
In theory this same issue exists for all the hypercalls in the vmmouse
driver; in practice it has only been seen with vmware_hypercall3() and
vmware_hypercall4(). For now, just mark RDI/RSI as clobbered for those
two calls. This should have a minimal effect on code generation overall
as it should be rare for the compiler to want to make RDI/RSI live
across hypercalls. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: reject new transactions if the fs is fully read-only
[BUG]
There is a bug report where a heavily fuzzed fs is mounted with all
rescue mount options, which leads to the following warnings during
unmount:
BTRFS: Transaction aborted (error -22)
Modules linked in:
CPU: 0 UID: 0 PID: 9758 Comm: repro.out Not tainted
6.19.0-rc5-00002-gb71e635feefc #7 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:find_free_extent_update_loop fs/btrfs/extent-tree.c:4208 [inline]
RIP: 0010:find_free_extent+0x52f0/0x5d20 fs/btrfs/extent-tree.c:4611
Call Trace:
<TASK>
btrfs_reserve_extent+0x2cd/0x790 fs/btrfs/extent-tree.c:4705
btrfs_alloc_tree_block+0x1e1/0x10e0 fs/btrfs/extent-tree.c:5157
btrfs_force_cow_block+0x578/0x2410 fs/btrfs/ctree.c:517
btrfs_cow_block+0x3c4/0xa80 fs/btrfs/ctree.c:708
btrfs_search_slot+0xcad/0x2b50 fs/btrfs/ctree.c:2130
btrfs_truncate_inode_items+0x45d/0x2350 fs/btrfs/inode-item.c:499
btrfs_evict_inode+0x923/0xe70 fs/btrfs/inode.c:5628
evict+0x5f4/0xae0 fs/inode.c:837
__dentry_kill+0x209/0x660 fs/dcache.c:670
finish_dput+0xc9/0x480 fs/dcache.c:879
shrink_dcache_for_umount+0xa0/0x170 fs/dcache.c:1661
generic_shutdown_super+0x67/0x2c0 fs/super.c:621
kill_anon_super+0x3b/0x70 fs/super.c:1289
btrfs_kill_super+0x41/0x50 fs/btrfs/super.c:2127
deactivate_locked_super+0xbc/0x130 fs/super.c:474
cleanup_mnt+0x425/0x4c0 fs/namespace.c:1318
task_work_run+0x1d4/0x260 kernel/task_work.c:233
exit_task_work include/linux/task_work.h:40 [inline]
do_exit+0x694/0x22f0 kernel/exit.c:971
do_group_exit+0x21c/0x2d0 kernel/exit.c:1112
__do_sys_exit_group kernel/exit.c:1123 [inline]
__se_sys_exit_group kernel/exit.c:1121 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1121
x64_sys_call+0x2210/0x2210 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xe8/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x44f639
Code: Unable to access opcode bytes at 0x44f60f.
RSP: 002b:00007ffc15c4e088 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 00000000004c32f0 RCX: 000000000044f639
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000001
RBP: 0000000000000001 R08: ffffffffffffffc0 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000004c32f0
R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
</TASK>
Since rescue mount options will mark the full fs read-only, there should
be no new transaction triggered.
But during unmount we will evict all inodes, which can trigger a new
transaction, and triggers warnings on a heavily corrupted fs.
[CAUSE]
Btrfs allows new transaction even on a read-only fs, this is to allow
log replay happen even on read-only mounts, just like what ext4/xfs do.
However with rescue mount options, the fs is fully read-only and cannot
be remounted read-write, thus in that case we should also reject any new
transactions.
[FIX]
If we find the fs has rescue mount options, we should treat the fs as
error, so that no new transaction can be started. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Disable MMIO access during SMU Mode 1 reset
During Mode 1 reset, the ASIC undergoes a reset cycle and becomes
temporarily inaccessible via PCIe. Any attempt to access MMIO registers
during this window (e.g., from interrupt handlers or other driver threads)
can result in uncompleted PCIe transactions, leading to NMI panics or
system hangs.
To prevent this, set the `no_hw_access` flag to true immediately after
triggering the reset. This signals other driver components to skip
register accesses while the device is offline.
A memory barrier `smp_mb()` is added to ensure the flag update is
globally visible to all cores before the driver enters the sleep/wait
state.
(cherry picked from commit 7edb503fe4b6d67f47d8bb0dfafb8e699bb0f8a4) |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Set correct protection_map[] for VM_NONE/VM_SHARED
For 32BIT platform _PAGE_PROTNONE is 0, so set a VMA to be VM_NONE or
VM_SHARED will make pages non-present, then cause Oops with kernel page
fault.
Fix it by set correct protection_map[] for VM_NONE/VM_SHARED, replacing
_PAGE_PROTNONE with _PAGE_PRESENT. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: don't WARN for connections on invalid channels
It's not clear (to me) how exactly syzbot managed to hit this,
but it seems conceivable that e.g. regulatory changed and has
disabled a channel between scanning (channel is checked to be
usable by cfg80211_get_ies_channel_number) and connecting on
the channel later.
With one scenario that isn't covered elsewhere described above,
the warning isn't good, replace it with a (more informative)
error message. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: Implement settime64 as stub for MVM/MLD PTP
Since commit dfb073d32cac ("ptp: Return -EINVAL on ptp_clock_register if
required ops are NULL"), PTP clock registered through ptp_clock_register
is required to have ptp_clock_info.settime64 set, however, neither MVM
nor MLD's PTP clock implementation sets it, resulting in warnings when
the interface starts up, like
WARNING: drivers/ptp/ptp_clock.c:325 at ptp_clock_register+0x2c8/0x6b8, CPU#1: wpa_supplicant/469
CPU: 1 UID: 0 PID: 469 Comm: wpa_supplicant Not tainted 6.18.0+ #101 PREEMPT(full)
ra: ffff800002732cd4 iwl_mvm_ptp_init+0x114/0x188 [iwlmvm]
ERA: 9000000002fdc468 ptp_clock_register+0x2c8/0x6b8
iwlwifi 0000:01:00.0: Failed to register PHC clock (-22)
I don't find an appropriate firmware interface to implement settime64()
for iwlwifi MLD/MVM, thus instead create a stub that returns
-EOPTNOTSUPP only, suppressing the warning and allowing the PTP clock to
be registered. |
| In the Linux kernel, the following vulnerability has been resolved:
md: suspend array while updating raid_disks via sysfs
In raid1_reshape(), freeze_array() is called before modifying the r1bio
memory pool (conf->r1bio_pool) and conf->raid_disks, and
unfreeze_array() is called after the update is completed.
However, freeze_array() only waits until nr_sync_pending and
(nr_pending - nr_queued) of all buckets reaches zero. When an I/O error
occurs, nr_queued is increased and the corresponding r1bio is queued to
either retry_list or bio_end_io_list. As a result, freeze_array() may
unblock before these r1bios are released.
This can lead to a situation where conf->raid_disks and the mempool have
already been updated while queued r1bios, allocated with the old
raid_disks value, are later released. Consequently, free_r1bio() may
access memory out of bounds in put_all_bios() and release r1bios of the
wrong size to the new mempool, potentially causing issues with the
mempool as well.
Since only normal I/O might increase nr_queued while an I/O error occurs,
suspending the array avoids this issue.
Note: Updating raid_disks via ioctl SET_ARRAY_INFO already suspends
the array. Therefore, we suspend the array when updating raid_disks
via sysfs to avoid this issue too. |
| The Taskbuilder – WordPress Project Management & Task Management plugin for WordPress is vulnerable to authorization bypass in all versions up to, and including, 5.0.2. This is due to missing authorization checks on the project and task comment submission functions (AJAX actions: wppm_submit_proj_comment and wppm_submit_task_comment). This makes it possible for authenticated attackers, with subscriber-level access and above, to create comments on any project or task (including private projects they cannot view or are not assigned to), and inject arbitrary HTML and CSS via the insufficiently sanitized comment_body parameter. |
| A vulnerability, which was classified as critical, was found in square squalor. This affects an unknown part. The manipulation leads to sql injection. Upgrading to version v0.0.0 is able to address this issue. The patch is named f6f0a47cc344711042eb0970cb423e6950ba3f93. It is recommended to upgrade the affected component. The associated identifier of this vulnerability is VDB-217623. |
| The Private Comment plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'Label text' setting in all versions up to, and including, 0.0.4. This is due to insufficient input sanitization and output escaping on the plugin's label text option. This makes it possible for authenticated attackers, with Administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. |
| Improper header parsing may lead to request smuggling has been identified in Hiawatha webserver version 11.7 which allows an unauthenticated attacker to access restricted resources managed by Hiawatha webserver. |
| The Gutenberg Blocks with AI by Kadence WP plugin for WordPress is vulnerable to Missing Authorization in all versions up to, and including, 3.6.1. This is due to a missing capability check in the `process_image_data_ajax_callback()` function which handles the `kadence_import_process_image_data` AJAX action. The function's authorization check via `verify_ajax_call()` only validates `edit_posts` capability but fails to check for the `upload_files` capability. This makes it possible for authenticated attackers, with Contributor-level access and above, to upload arbitrary images from remote URLs to the WordPress Media Library, bypassing the standard WordPress capability restriction that prevents Contributors from uploading files. |