Search

Search Results (329656 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-1419 2026-01-26 4.7 Medium
A weakness has been identified in D-Link DCS700l 1.03.09. Affected is an unknown function of the file /setDayNightMode of the component Web Form Handler. Executing a manipulation of the argument LightSensorControl can lead to command injection. The attack may be launched remotely. The exploit has been made available to the public and could be used for attacks.
CVE-2026-1418 2026-01-26 5.3 Medium
A security vulnerability has been detected in GPAC up to 2.4.0. This affects the function gf_text_import_srt_bifs of the file src/scene_manager/text_to_bifs.c of the component SRT Subtitle Import. Such manipulation leads to out-of-bounds write. The attack needs to be performed locally. The exploit has been disclosed publicly and may be used. The name of the patch is 10c73b82cf0e367383d091db38566a0e4fe71772. It is best practice to apply a patch to resolve this issue.
CVE-2026-1417 2026-01-26 3.3 Low
A weakness has been identified in GPAC up to 2.4.0. Affected by this issue is the function dump_isom_rtp of the file applications/mp4box/filedump.c. This manipulation causes null pointer dereference. The attack needs to be launched locally. The exploit has been made available to the public and could be used for attacks. Patch name: f96bd57c3ccdcde4335a0be28cd3e8fe296993de. Applying a patch is the recommended action to fix this issue.
CVE-2026-1416 2026-01-26 3.3 Low
A security flaw has been discovered in GPAC up to 2.4.0. Affected by this vulnerability is the function DumpMovieInfo of the file applications/mp4box/filedump.c. The manipulation results in null pointer dereference. The attack must be initiated from a local position. The exploit has been released to the public and may be used for attacks. The patch is identified as d45c264c20addf0c1cc05124ede33f8ffa800e68. It is advisable to implement a patch to correct this issue.
CVE-2026-1415 2026-01-26 3.3 Low
A vulnerability was identified in GPAC up to 2.4.0. Affected is the function gf_media_export_webvtt_metadata of the file src/media_tools/media_export.c. The manipulation of the argument Name leads to null pointer dereference. The attack must be carried out locally. The exploit is publicly available and might be used. The identifier of the patch is af951b892dfbaaa38336ba2eba6d6a42c25810fd. To fix this issue, it is recommended to deploy a patch.
CVE-2026-1414 2026-01-26 6.3 Medium
A vulnerability was determined in Sangfor Operation and Maintenance Security Management System up to 3.0.12. This impacts the function getInformation of the file /equipment/get_Information of the component HTTP POST Request Handler. Executing a manipulation of the argument fortEquipmentIp can lead to command injection. The attack can be launched remotely. The exploit has been publicly disclosed and may be utilized.
CVE-2025-52694 1 Advantech 7 Iot Edge Linux Docker, Iot Edge Products, Iot Edge Windows and 4 more 2026-01-26 10 Critical
Successful exploitation of the SQL injection vulnerability could allow an unauthenticated remote attacker to execute arbitrary SQL commands on the vulnerable service when it is exposed to the Internet, potentially affecting data confidentiality, integrity, and availability. Users and administrators of affected product versions are advised to update to the latest versions immediately.
CVE-2026-1413 2026-01-26 6.3 Medium
A vulnerability was found in Sangfor Operation and Maintenance Security Management System up to 3.0.12. This affects the function portValidate of the file /fort/ip_and_port/port_validate of the component HTTP POST Request Handler. Performing a manipulation of the argument port results in command injection. The attack can be initiated remotely. The exploit has been made public and could be used.
CVE-2026-1412 2026-01-26 7.3 High
A vulnerability has been found in Sangfor Operation and Maintenance Security Management System up to 3.0.12. The impacted element is an unknown function of the file /fort/audit/get_clip_img of the component HTTP POST Request Handler. Such manipulation of the argument frame/dirno leads to command injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used.
CVE-2026-1411 2026-01-26 6.1 Medium
A flaw has been found in Beetel 777VR1 up to 01.00.09/01.00.09_55. The affected element is an unknown function of the component UART Interface. This manipulation causes improper access controls. It is feasible to perform the attack on the physical device. The complexity of an attack is rather high. The exploitability is described as difficult. The exploit has been published and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2026-1410 2026-01-26 6.4 Medium
A vulnerability was detected in Beetel 777VR1 up to 01.00.09/01.00.09_55. Impacted is an unknown function of the component UART Interface. The manipulation results in missing authentication. An attack on the physical device is feasible. This attack is characterized by high complexity. The exploitability is considered difficult. The exploit is now public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2026-1409 2026-01-26 2 Low
A security vulnerability has been detected in Beetel 777VR1 up to 01.00.09/01.00.09_55. This issue affects some unknown processing of the component UART Interface. The manipulation leads to improper restriction of excessive authentication attempts. It is possible to launch the attack on the physical device. The attack's complexity is rated as high. The exploitability is assessed as difficult. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2026-1408 2026-01-25 2 Low
A weakness has been identified in Beetel 777VR1 up to 01.00.09/01.00.09_55. This vulnerability affects unknown code of the component UART Interface. Executing a manipulation can lead to weak password requirements. The physical device can be targeted for the attack. The attack requires a high level of complexity. It is stated that the exploitability is difficult. The exploit has been made available to the public and could be used for attacks. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2026-1407 2026-01-25 2 Low
A security flaw has been discovered in Beetel 777VR1 up to 01.00.09/01.00.09_55. This affects an unknown part of the component UART Interface. Performing a manipulation results in information disclosure. The attack may be carried out on the physical device. The attack is considered to have high complexity. It is indicated that the exploitability is difficult. The exploit has been released to the public and may be used for attacks. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2022-48620 1 Troglobit 1 Libeuv 2026-01-25 9.8 Critical
uev (aka libuev) before 2.4.1 has a buffer overflow in epoll_wait if maxevents is a large number.
CVE-2026-23013 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: net: octeon_ep_vf: fix free_irq dev_id mismatch in IRQ rollback octep_vf_request_irqs() requests MSI-X queue IRQs with dev_id set to ioq_vector. If request_irq() fails part-way, the rollback loop calls free_irq() with dev_id set to 'oct', which does not match the original dev_id and may leave the irqaction registered. This can keep IRQ handlers alive while ioq_vector is later freed during unwind/teardown, leading to a use-after-free or crash when an interrupt fires. Fix the error path to free IRQs with the same ioq_vector dev_id used during request_irq().
CVE-2026-23012 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/damon/core: remove call_control in inactive contexts If damon_call() is executed against a DAMON context that is not running, the function returns error while keeping the damon_call_control object linked to the context's call_controls list. Let's suppose the object is deallocated after the damon_call(), and yet another damon_call() is executed against the same context. The function tries to add the new damon_call_control object to the call_controls list, which still has the pointer to the previous damon_call_control object, which is deallocated. As a result, use-after-free happens. This can actually be triggered using the DAMON sysfs interface. It is not easily exploitable since it requires the sysfs write permission and making a definitely weird file writes, though. Please refer to the report for more details about the issue reproduction steps. Fix the issue by making two changes. Firstly, move the final kdamond_call() for cancelling all existing damon_call() requests from terminating DAMON context to be done before the ctx->kdamond reset. This makes any code that sees NULL ctx->kdamond can safely assume the context may not access damon_call() requests anymore. Secondly, let damon_call() to cleanup the damon_call_control objects that were added to the already-terminated DAMON context, before returning the error.
CVE-2026-23011 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: ipv4: ip_gre: make ipgre_header() robust Analog to commit db5b4e39c4e6 ("ip6_gre: make ip6gre_header() robust") Over the years, syzbot found many ways to crash the kernel in ipgre_header() [1]. This involves team or bonding drivers ability to dynamically change their dev->needed_headroom and/or dev->hard_header_len In this particular crash mld_newpack() allocated an skb with a too small reserve/headroom, and by the time mld_sendpack() was called, syzbot managed to attach an ipgre device. [1] skbuff: skb_under_panic: text:ffffffff89ea3cb7 len:2030915468 put:2030915372 head:ffff888058b43000 data:ffff887fdfa6e194 tail:0x120 end:0x6c0 dev:team0 kernel BUG at net/core/skbuff.c:213 ! Oops: invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 1 UID: 0 PID: 1322 Comm: kworker/1:9 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Workqueue: mld mld_ifc_work RIP: 0010:skb_panic+0x157/0x160 net/core/skbuff.c:213 Call Trace: <TASK> skb_under_panic net/core/skbuff.c:223 [inline] skb_push+0xc3/0xe0 net/core/skbuff.c:2641 ipgre_header+0x67/0x290 net/ipv4/ip_gre.c:897 dev_hard_header include/linux/netdevice.h:3436 [inline] neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618 NF_HOOK_COND include/linux/netfilter.h:307 [inline] ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247 NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318 mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855 mld_send_cr net/ipv6/mcast.c:2154 [inline] mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
CVE-2026-23010 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix use-after-free in inet6_addr_del(). syzbot reported use-after-free of inet6_ifaddr in inet6_addr_del(). [0] The cited commit accidentally moved ipv6_del_addr() for mngtmpaddr before reading its ifp->flags for temporary addresses in inet6_addr_del(). Let's move ipv6_del_addr() down to fix the UAF. [0]: BUG: KASAN: slab-use-after-free in inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 Read of size 4 at addr ffff88807b89c86c by task syz.3.1618/9593 CPU: 0 UID: 0 PID: 9593 Comm: syz.3.1618 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 addrconf_del_ifaddr+0x11e/0x190 net/ipv6/addrconf.c:3181 inet6_ioctl+0x1e5/0x2b0 net/ipv6/af_inet6.c:582 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f164cf8f749 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f164de64038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f164d1e5fa0 RCX: 00007f164cf8f749 RDX: 0000200000000000 RSI: 0000000000008936 RDI: 0000000000000003 RBP: 00007f164d013f91 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007f164d1e6038 R14: 00007f164d1e5fa0 R15: 00007ffde15c8288 </TASK> Allocated by task 9593: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:397 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:414 kmalloc_noprof include/linux/slab.h:957 [inline] kzalloc_noprof include/linux/slab.h:1094 [inline] ipv6_add_addr+0x4e3/0x2010 net/ipv6/addrconf.c:1120 inet6_addr_add+0x256/0x9b0 net/ipv6/addrconf.c:3050 addrconf_add_ifaddr+0x1fc/0x450 net/ipv6/addrconf.c:3160 inet6_ioctl+0x103/0x2b0 net/ipv6/af_inet6.c:580 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6099: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:584 poison_slab_object mm/kasan/common.c:252 [inline] __kasan_slab_free+0x5f/0x80 mm/kasan/common.c:284 kasan_slab_free include/linux/kasan.h:234 [inline] slab_free_hook mm/slub.c:2540 [inline] slab_free_freelist_hook mm/slub.c:2569 [inline] slab_free_bulk mm/slub.c:6696 [inline] kmem_cache_free_bulk mm/slub.c:7383 [inline] kmem_cache_free_bulk+0x2bf/0x680 mm/slub.c:7362 kfree_bulk include/linux/slab.h:830 [inline] kvfree_rcu_bulk+0x1b7/0x1e0 mm/slab_common.c:1523 kvfree_rcu_drain_ready mm/slab_common.c:1728 [inline] kfree_rcu_monitor+0x1d0/0x2f0 mm/slab_common.c:1801 process_one_work+0x9ba/0x1b20 kernel/workqueue.c:3257 process_scheduled_works kernel/workqu ---truncated---
CVE-2026-23009 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: xhci: sideband: don't dereference freed ring when removing sideband endpoint xhci_sideband_remove_endpoint() incorrecly assumes that the endpoint is running and has a valid transfer ring. Lianqin reported a crash during suspend/wake-up stress testing, and found the cause to be dereferencing a non-existing transfer ring 'ep->ring' during xhci_sideband_remove_endpoint(). The endpoint and its ring may be in unknown state if this function is called after xHCI was reinitialized in resume (lost power), or if device is being re-enumerated, disconnected or endpoint already dropped. Fix this by both removing unnecessary ring access, and by checking ep->ring exists before dereferencing it. Also make sure endpoint is running before attempting to stop it. Remove the xhci_initialize_ring_info() call during sideband endpoint removal as is it only initializes ring structure enqueue, dequeue and cycle state values to their starting values without changing actual hardware enqueue, dequeue and cycle state. Leaving them out of sync is worse than leaving it as it is. The endpoint will get freed in after this in most usecases. If the (audio) class driver want's to reuse the endpoint after offload then it is up to the class driver to ensure endpoint is properly set up.