Search

Search Results (324612 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50697 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mrp: introduce active flags to prevent UAF when applicant uninit The caller of del_timer_sync must prevent restarting of the timer, If we have no this synchronization, there is a small probability that the cancellation will not be successful. And syzbot report the fellowing crash: ================================================================== BUG: KASAN: use-after-free in hlist_add_head include/linux/list.h:929 [inline] BUG: KASAN: use-after-free in enqueue_timer+0x18/0xa4 kernel/time/timer.c:605 Write at addr f9ff000024df6058 by task syz-fuzzer/2256 Pointer tag: [f9], memory tag: [fe] CPU: 1 PID: 2256 Comm: syz-fuzzer Not tainted 6.1.0-rc5-syzkaller-00008- ge01d50cbd6ee #0 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace.part.0+0xe0/0xf0 arch/arm64/kernel/stacktrace.c:156 dump_backtrace arch/arm64/kernel/stacktrace.c:162 [inline] show_stack+0x18/0x40 arch/arm64/kernel/stacktrace.c:163 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x68/0x84 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:284 [inline] print_report+0x1a8/0x4a0 mm/kasan/report.c:395 kasan_report+0x94/0xb4 mm/kasan/report.c:495 __do_kernel_fault+0x164/0x1e0 arch/arm64/mm/fault.c:320 do_bad_area arch/arm64/mm/fault.c:473 [inline] do_tag_check_fault+0x78/0x8c arch/arm64/mm/fault.c:749 do_mem_abort+0x44/0x94 arch/arm64/mm/fault.c:825 el1_abort+0x40/0x60 arch/arm64/kernel/entry-common.c:367 el1h_64_sync_handler+0xd8/0xe4 arch/arm64/kernel/entry-common.c:427 el1h_64_sync+0x64/0x68 arch/arm64/kernel/entry.S:576 hlist_add_head include/linux/list.h:929 [inline] enqueue_timer+0x18/0xa4 kernel/time/timer.c:605 mod_timer+0x14/0x20 kernel/time/timer.c:1161 mrp_periodic_timer_arm net/802/mrp.c:614 [inline] mrp_periodic_timer+0xa0/0xc0 net/802/mrp.c:627 call_timer_fn.constprop.0+0x24/0x80 kernel/time/timer.c:1474 expire_timers+0x98/0xc4 kernel/time/timer.c:1519 To fix it, we can introduce a new active flags to make sure the timer will not restart.
CVE-2022-50699 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: selinux: enable use of both GFP_KERNEL and GFP_ATOMIC in convert_context() The following warning was triggered on a hardware environment: SELinux: Converting 162 SID table entries... BUG: sleeping function called from invalid context at __might_sleep+0x60/0x74 0x0 in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 5943, name: tar CPU: 7 PID: 5943 Comm: tar Tainted: P O 5.10.0 #1 Call trace: dump_backtrace+0x0/0x1c8 show_stack+0x18/0x28 dump_stack+0xe8/0x15c ___might_sleep+0x168/0x17c __might_sleep+0x60/0x74 __kmalloc_track_caller+0xa0/0x7dc kstrdup+0x54/0xac convert_context+0x48/0x2e4 sidtab_context_to_sid+0x1c4/0x36c security_context_to_sid_core+0x168/0x238 security_context_to_sid_default+0x14/0x24 inode_doinit_use_xattr+0x164/0x1e4 inode_doinit_with_dentry+0x1c0/0x488 selinux_d_instantiate+0x20/0x34 security_d_instantiate+0x70/0xbc d_splice_alias+0x4c/0x3c0 ext4_lookup+0x1d8/0x200 [ext4] __lookup_slow+0x12c/0x1e4 walk_component+0x100/0x200 path_lookupat+0x88/0x118 filename_lookup+0x98/0x130 user_path_at_empty+0x48/0x60 vfs_statx+0x84/0x140 vfs_fstatat+0x20/0x30 __se_sys_newfstatat+0x30/0x74 __arm64_sys_newfstatat+0x1c/0x2c el0_svc_common.constprop.0+0x100/0x184 do_el0_svc+0x1c/0x2c el0_svc+0x20/0x34 el0_sync_handler+0x80/0x17c el0_sync+0x13c/0x140 SELinux: Context system_u:object_r:pssp_rsyslog_log_t:s0:c0 is not valid (left unmapped). It was found that within a critical section of spin_lock_irqsave in sidtab_context_to_sid(), convert_context() (hooked by sidtab_convert_params.func) might cause the process to sleep via allocating memory with GFP_KERNEL, which is problematic. As Ondrej pointed out [1], convert_context()/sidtab_convert_params.func has another caller sidtab_convert_tree(), which is okay with GFP_KERNEL. Therefore, fix this problem by adding a gfp_t argument for convert_context()/sidtab_convert_params.func and pass GFP_KERNEL/_ATOMIC properly in individual callers. [PM: wrap long BUG() output lines, tweak subject line]
CVE-2022-50701 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host SDIO may need addtional 511 bytes to align bus operation. If the tailroom of this skb is not big enough, we would access invalid memory region. For low level operation, increase skb size to keep valid memory access in SDIO host. Error message: [69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0 [69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451 [69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1 [69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300] [69.951] Call Trace: [69.951] <TASK> [69.952] dump_stack_lvl+0x49/0x63 [69.952] print_report+0x171/0x4a8 [69.952] kasan_report+0xb4/0x130 [69.952] kasan_check_range+0x149/0x1e0 [69.952] memcpy+0x24/0x70 [69.952] sg_copy_buffer+0xe9/0x1a0 [69.952] sg_copy_to_buffer+0x12/0x20 [69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300] [69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300] [69.952] process_one_work+0x7ee/0x1320 [69.952] worker_thread+0x53c/0x1240 [69.952] kthread+0x2b8/0x370 [69.952] ret_from_fork+0x1f/0x30 [69.952] </TASK> [69.952] Allocated by task 854: [69.952] kasan_save_stack+0x26/0x50 [69.952] kasan_set_track+0x25/0x30 [69.952] kasan_save_alloc_info+0x1b/0x30 [69.952] __kasan_kmalloc+0x87/0xa0 [69.952] __kmalloc_node_track_caller+0x63/0x150 [69.952] kmalloc_reserve+0x31/0xd0 [69.952] __alloc_skb+0xfc/0x2b0 [69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76] [69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76] [69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76] [69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib] [69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib] [69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common] [69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s] [69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common] [69.953] process_one_work+0x7ee/0x1320 [69.953] worker_thread+0x53c/0x1240 [69.953] kthread+0x2b8/0x370 [69.953] ret_from_fork+0x1f/0x30 [69.953] The buggy address belongs to the object at ffff88811c9ce800 which belongs to the cache kmalloc-2k of size 2048 [69.953] The buggy address is located 0 bytes to the right of 2048-byte region [ffff88811c9ce800, ffff88811c9cf000) [69.953] Memory state around the buggy address: [69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [69.953] ^ [69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
CVE-2022-50702 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vdpa_sim: fix possible memory leak in vdpasim_net_init() and vdpasim_blk_init() Inject fault while probing module, if device_register() fails in vdpasim_net_init() or vdpasim_blk_init(), but the refcount of kobject is not decreased to 0, the name allocated in dev_set_name() is leaked. Fix this by calling put_device(), so that name can be freed in callback function kobject_cleanup(). (vdpa_sim_net) unreferenced object 0xffff88807eebc370 (size 16): comm "modprobe", pid 3848, jiffies 4362982860 (age 18.153s) hex dump (first 16 bytes): 76 64 70 61 73 69 6d 5f 6e 65 74 00 6b 6b 6b a5 vdpasim_net.kkk. backtrace: [<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150 [<ffffffff81731d53>] kstrdup+0x33/0x60 [<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110 [<ffffffff82d87aab>] dev_set_name+0xab/0xe0 [<ffffffff82d91a23>] device_add+0xe3/0x1a80 [<ffffffffa0270013>] 0xffffffffa0270013 [<ffffffff81001c27>] do_one_initcall+0x87/0x2e0 [<ffffffff813739cb>] do_init_module+0x1ab/0x640 [<ffffffff81379d20>] load_module+0x5d00/0x77f0 [<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0 [<ffffffff83c4d505>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 (vdpa_sim_blk) unreferenced object 0xffff8881070c1250 (size 16): comm "modprobe", pid 6844, jiffies 4364069319 (age 17.572s) hex dump (first 16 bytes): 76 64 70 61 73 69 6d 5f 62 6c 6b 00 6b 6b 6b a5 vdpasim_blk.kkk. backtrace: [<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150 [<ffffffff81731d53>] kstrdup+0x33/0x60 [<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110 [<ffffffff82d87aab>] dev_set_name+0xab/0xe0 [<ffffffff82d91a23>] device_add+0xe3/0x1a80 [<ffffffffa0220013>] 0xffffffffa0220013 [<ffffffff81001c27>] do_one_initcall+0x87/0x2e0 [<ffffffff813739cb>] do_init_module+0x1ab/0x640 [<ffffffff81379d20>] load_module+0x5d00/0x77f0 [<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0 [<ffffffff83c4d505>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2022-50704 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: USB: gadget: Fix use-after-free during usb config switch In the process of switching USB config from rndis to other config, if the hardware does not support the ->pullup callback, or the hardware encounters a low probability fault, both of them may cause the ->pullup callback to fail, which will then cause a system panic (use after free). The gadget drivers sometimes need to be unloaded regardless of the hardware's behavior. Analysis as follows: ======================================================================= (1) write /config/usb_gadget/g1/UDC "none" gether_disconnect+0x2c/0x1f8 rndis_disable+0x4c/0x74 composite_disconnect+0x74/0xb0 configfs_composite_disconnect+0x60/0x7c usb_gadget_disconnect+0x70/0x124 usb_gadget_unregister_driver+0xc8/0x1d8 gadget_dev_desc_UDC_store+0xec/0x1e4 (2) rm /config/usb_gadget/g1/configs/b.1/f1 rndis_deregister+0x28/0x54 rndis_free+0x44/0x7c usb_put_function+0x14/0x1c config_usb_cfg_unlink+0xc4/0xe0 configfs_unlink+0x124/0x1c8 vfs_unlink+0x114/0x1dc (3) rmdir /config/usb_gadget/g1/functions/rndis.gs4 panic+0x1fc/0x3d0 do_page_fault+0xa8/0x46c do_mem_abort+0x3c/0xac el1_sync_handler+0x40/0x78 0xffffff801138f880 rndis_close+0x28/0x34 eth_stop+0x74/0x110 dev_close_many+0x48/0x194 rollback_registered_many+0x118/0x814 unregister_netdev+0x20/0x30 gether_cleanup+0x1c/0x38 rndis_attr_release+0xc/0x14 kref_put+0x74/0xb8 configfs_rmdir+0x314/0x374 If gadget->ops->pullup() return an error, function rndis_close() will be called, then it will causes a use-after-free problem. =======================================================================
CVE-2022-50706 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/ieee802154: don't warn zero-sized raw_sendmsg() syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1], for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting __dev_queue_xmit() with skb->len == 0. Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was able to return 0, don't call __dev_queue_xmit() if packet length is 0. ---------- #include <sys/socket.h> #include <netinet/in.h> int main(int argc, char *argv[]) { struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) }; struct iovec iov = { }; struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 }; sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0); return 0; } ---------- Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't redirect packets with invalid pkt_len") should be reverted, for skb->len == 0 was acceptable for at least PF_IEEE802154 socket.
CVE-2023-53989 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: arm64: mm: fix VA-range sanity check Both create_mapping_noalloc() and update_mapping_prot() sanity-check their 'virt' parameter, but the check itself doesn't make much sense. The condition used today appears to be a historical accident. The sanity-check condition: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } ... can only be true for the KASAN shadow region or the module region, and there's no reason to exclude these specifically for creating and updateing mappings. When arm64 support was first upstreamed in commit: c1cc1552616d0f35 ("arm64: MMU initialisation") ... the condition was: if (virt < VMALLOC_START) { [ ... warning here ... ] return; } At the time, VMALLOC_START was the lowest kernel address, and this was checking whether 'virt' would be translated via TTBR1. Subsequently in commit: 14c127c957c1c607 ("arm64: mm: Flip kernel VA space") ... the condition was changed to: if ((virt >= VA_START) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } This appear to have been a thinko. The commit moved the linear map to the bottom of the kernel address space, with VMALLOC_START being at the halfway point. The old condition would warn for changes to the linear map below this, and at the time VA_START was the end of the linear map. Subsequently we cleaned up the naming of VA_START in commit: 77ad4ce69321abbe ("arm64: memory: rename VA_START to PAGE_END") ... keeping the erroneous condition as: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } Correct the condition to check against the start of the TTBR1 address space, which is currently PAGE_OFFSET. This simplifies the logic, and more clearly matches the "outside kernel range" message in the warning.
CVE-2023-53991 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Disallow unallocated resources to be returned In the event that the topology requests resources that have not been created by the system (because they are typically not represented in dpu_mdss_cfg ^1), the resource(s) in global_state (in this case DSC blocks, until their allocation/assignment is being sanity-checked in "drm/msm/dpu: Reject topologies for which no DSC blocks are available") remain NULL but will still be returned out of dpu_rm_get_assigned_resources, where the caller expects to get an array containing num_blks valid pointers (but instead gets these NULLs). To prevent this from happening, where null-pointer dereferences typically result in a hard-to-debug platform lockup, num_blks shouldn't increase past NULL blocks and will print an error and break instead. After all, max_blks represents the static size of the maximum number of blocks whereas the actual amount varies per platform. ^1: which can happen after a git rebase ended up moving additions to _dpu_cfg to a different struct which has the same patch context. Patchwork: https://patchwork.freedesktop.org/patch/517636/
CVE-2023-53998 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwrng: virtio - Fix race on data_avail and actual data The virtio rng device kicks off a new entropy request whenever the data available reaches zero. When a new request occurs at the end of a read operation, that is, when the result of that request is only needed by the next reader, then there is a race between the writing of the new data and the next reader. This is because there is no synchronisation whatsoever between the writer and the reader. Fix this by writing data_avail with smp_store_release and reading it with smp_load_acquire when we first enter read. The subsequent reads are safe because they're either protected by the first load acquire, or by the completion mechanism. Also remove the redundant zeroing of data_idx in random_recv_done (data_idx must already be zero at this point) and data_avail in request_entropy (ditto).
CVE-2023-53999 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: TC, Fix internal port memory leak The flow rule can be splited, and the extra post_act rules are added to post_act table. It's possible to trigger memleak when the rule forwards packets from internal port and over tunnel, in the case that, for example, CT 'new' state offload is allowed. As int_port object is assigned to the flow attribute of post_act rule, and its refcnt is incremented by mlx5e_tc_int_port_get(), but mlx5e_tc_int_port_put() is not called, the refcnt is never decremented, then int_port is never freed. The kmemleak reports the following error: unreferenced object 0xffff888128204b80 (size 64): comm "handler20", pid 50121, jiffies 4296973009 (age 642.932s) hex dump (first 32 bytes): 01 00 00 00 19 00 00 00 03 f0 00 00 04 00 00 00 ................ 98 77 67 41 81 88 ff ff 98 77 67 41 81 88 ff ff .wgA.....wgA.... backtrace: [<00000000e992680d>] kmalloc_trace+0x27/0x120 [<000000009e945a98>] mlx5e_tc_int_port_get+0x3f3/0xe20 [mlx5_core] [<0000000035a537f0>] mlx5e_tc_add_fdb_flow+0x473/0xcf0 [mlx5_core] [<0000000070c2cec6>] __mlx5e_add_fdb_flow+0x7cf/0xe90 [mlx5_core] [<000000005cc84048>] mlx5e_configure_flower+0xd40/0x4c40 [mlx5_core] [<000000004f8a2031>] mlx5e_rep_indr_offload.isra.0+0x10e/0x1c0 [mlx5_core] [<000000007df797dc>] mlx5e_rep_indr_setup_tc_cb+0x90/0x130 [mlx5_core] [<0000000016c15cc3>] tc_setup_cb_add+0x1cf/0x410 [<00000000a63305b4>] fl_hw_replace_filter+0x38f/0x670 [cls_flower] [<000000008bc9e77c>] fl_change+0x1fd5/0x4430 [cls_flower] [<00000000e7f766e4>] tc_new_tfilter+0x867/0x2010 [<00000000e101c0ef>] rtnetlink_rcv_msg+0x6fc/0x9f0 [<00000000e1111d44>] netlink_rcv_skb+0x12c/0x360 [<0000000082dd6c8b>] netlink_unicast+0x438/0x710 [<00000000fc568f70>] netlink_sendmsg+0x794/0xc50 [<0000000016e92590>] sock_sendmsg+0xc5/0x190 So fix this by moving int_port cleanup code to the flow attribute free helper, which is used by all the attribute free cases.
CVE-2023-54000 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix deadlock issue when externel_lb and reset are executed together When externel_lb and reset are executed together, a deadlock may occur: [ 3147.217009] INFO: task kworker/u321:0:7 blocked for more than 120 seconds. [ 3147.230483] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 3147.238999] task:kworker/u321:0 state:D stack: 0 pid: 7 ppid: 2 flags:0x00000008 [ 3147.248045] Workqueue: hclge hclge_service_task [hclge] [ 3147.253957] Call trace: [ 3147.257093] __switch_to+0x7c/0xbc [ 3147.261183] __schedule+0x338/0x6f0 [ 3147.265357] schedule+0x50/0xe0 [ 3147.269185] schedule_preempt_disabled+0x18/0x24 [ 3147.274488] __mutex_lock.constprop.0+0x1d4/0x5dc [ 3147.279880] __mutex_lock_slowpath+0x1c/0x30 [ 3147.284839] mutex_lock+0x50/0x60 [ 3147.288841] rtnl_lock+0x20/0x2c [ 3147.292759] hclge_reset_prepare+0x68/0x90 [hclge] [ 3147.298239] hclge_reset_subtask+0x88/0xe0 [hclge] [ 3147.303718] hclge_reset_service_task+0x84/0x120 [hclge] [ 3147.309718] hclge_service_task+0x2c/0x70 [hclge] [ 3147.315109] process_one_work+0x1d0/0x490 [ 3147.319805] worker_thread+0x158/0x3d0 [ 3147.324240] kthread+0x108/0x13c [ 3147.328154] ret_from_fork+0x10/0x18 In externel_lb process, the hns3 driver call napi_disable() first, then the reset happen, then the restore process of the externel_lb will fail, and will not call napi_enable(). When doing externel_lb again, napi_disable() will be double call, cause a deadlock of rtnl_lock(). This patch use the HNS3_NIC_STATE_DOWN state to protect the calling of napi_disable() and napi_enable() in externel_lb process, just as the usage in ndo_stop() and ndo_start().
CVE-2023-54002 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion of exclop condition when starting balance Balance as exclusive state is compatible with paused balance and device add, which makes some things more complicated. The assertion of valid states when starting from paused balance needs to take into account two more states, the combinations can be hit when there are several threads racing to start balance and device add. This won't typically happen when the commands are started from command line. Scenario 1: With exclusive_operation state == BTRFS_EXCLOP_NONE. Concurrently adding multiple devices to the same mount point and btrfs_exclop_finish executed finishes before assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_NONE state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD, in fs/btrfs/ioctl.c:456 Call Trace: <TASK> btrfs_exclop_balance+0x13c/0x310 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd Scenario 2: With exclusive_operation state == BTRFS_EXCLOP_BALANCE_PAUSED. Concurrently adding multiple devices to the same mount point and btrfs_exclop_balance executed finish before the latter thread execute assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_BALANCE_PAUSED state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || fs_info->exclusive_operation == BTRFS_EXCLOP_NONE, fs/btrfs/ioctl.c:458 Call Trace: <TASK> btrfs_exclop_balance+0x240/0x410 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd An example of the failed assertion is below, which shows that the paused balance is also needed to be checked. root@syzkaller:/home/xsk# ./repro Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 [ 416.611428][ T7970] BTRFS info (device loop0): fs_info exclusive_operation: 0 Failed to add device /dev/vda, errno 14 [ 416.613973][ T7971] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.615456][ T7972] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.617528][ T7973] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.618359][ T7974] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.622589][ T7975] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.624034][ T7976] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.626420][ T7977] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.627643][ T7978] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.629006][ T7979] BTRFS info (device loop0): fs_info exclusive_operation: 3 [ 416.630298][ T7980] BTRFS info (device loop0): fs_info exclusive_operation: 3 Fai ---truncated---
CVE-2023-54006 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix data-race around unix_tot_inflight. unix_tot_inflight is changed under spin_lock(unix_gc_lock), but unix_release_sock() reads it locklessly. Let's use READ_ONCE() for unix_tot_inflight. Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix: annote lockless accesses to unix_tot_inflight & gc_in_progress") BUG: KCSAN: data-race in unix_inflight / unix_release_sock write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1: unix_inflight+0x130/0x180 net/unix/scm.c:64 unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123 unix_scm_to_skb net/unix/af_unix.c:1832 [inline] unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg+0x148/0x160 net/socket.c:747 ____sys_sendmsg+0x4e4/0x610 net/socket.c:2493 ___sys_sendmsg+0xc6/0x140 net/socket.c:2547 __sys_sendmsg+0x94/0x140 net/socket.c:2576 __do_sys_sendmsg net/socket.c:2585 [inline] __se_sys_sendmsg net/socket.c:2583 [inline] __x64_sys_sendmsg+0x45/0x50 net/socket.c:2583 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0: unix_release_sock+0x608/0x910 net/unix/af_unix.c:671 unix_release+0x59/0x80 net/unix/af_unix.c:1058 __sock_release+0x7d/0x170 net/socket.c:653 sock_close+0x19/0x30 net/socket.c:1385 __fput+0x179/0x5e0 fs/file_table.c:321 ____fput+0x15/0x20 fs/file_table.c:349 task_work_run+0x116/0x1a0 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline] syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297 do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x72/0xdc value changed: 0x00000000 -> 0x00000001 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
CVE-2023-54007 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vmci_host: fix a race condition in vmci_host_poll() causing GPF During fuzzing, a general protection fault is observed in vmci_host_poll(). general protection fault, probably for non-canonical address 0xdffffc0000000019: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x00000000000000c8-0x00000000000000cf] RIP: 0010:__lock_acquire+0xf3/0x5e00 kernel/locking/lockdep.c:4926 <- omitting registers -> Call Trace: <TASK> lock_acquire+0x1a4/0x4a0 kernel/locking/lockdep.c:5672 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xb3/0x100 kernel/locking/spinlock.c:162 add_wait_queue+0x3d/0x260 kernel/sched/wait.c:22 poll_wait include/linux/poll.h:49 [inline] vmci_host_poll+0xf8/0x2b0 drivers/misc/vmw_vmci/vmci_host.c:174 vfs_poll include/linux/poll.h:88 [inline] do_pollfd fs/select.c:873 [inline] do_poll fs/select.c:921 [inline] do_sys_poll+0xc7c/0x1aa0 fs/select.c:1015 __do_sys_ppoll fs/select.c:1121 [inline] __se_sys_ppoll+0x2cc/0x330 fs/select.c:1101 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x4e/0xa0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Example thread interleaving that causes the general protection fault is as follows: CPU1 (vmci_host_poll) CPU2 (vmci_host_do_init_context) ----- ----- // Read uninitialized context context = vmci_host_dev->context; // Initialize context vmci_host_dev->context = vmci_ctx_create(); vmci_host_dev->ct_type = VMCIOBJ_CONTEXT; if (vmci_host_dev->ct_type == VMCIOBJ_CONTEXT) { // Dereferencing the wrong pointer poll_wait(..., &context->host_context); } In this scenario, vmci_host_poll() reads vmci_host_dev->context first, and then reads vmci_host_dev->ct_type to check that vmci_host_dev->context is initialized. However, since these two reads are not atomically executed, there is a chance of a race condition as described above. To fix this race condition, read vmci_host_dev->context after checking the value of vmci_host_dev->ct_type so that vmci_host_poll() always reads an initialized context.
CVE-2023-54012 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: fix stack overflow when LRO is disabled for virtual interfaces When the virtual interface's feature is updated, it synchronizes the updated feature for its own lower interface. This propagation logic should be worked as the iteration, not recursively. But it works recursively due to the netdev notification unexpectedly. This problem occurs when it disables LRO only for the team and bonding interface type. team0 | +------+------+-----+-----+ | | | | | team1 team2 team3 ... team200 If team0's LRO feature is updated, it generates the NETDEV_FEAT_CHANGE event to its own lower interfaces(team1 ~ team200). It is worked by netdev_sync_lower_features(). So, the NETDEV_FEAT_CHANGE notification logic of each lower interface work iteratively. But generated NETDEV_FEAT_CHANGE event is also sent to the upper interface too. upper interface(team0) generates the NETDEV_FEAT_CHANGE event for its own lower interfaces again. lower and upper interfaces receive this event and generate this event again and again. So, the stack overflow occurs. But it is not the infinite loop issue. Because the netdev_sync_lower_features() updates features before generating the NETDEV_FEAT_CHANGE event. Already synchronized lower interfaces skip notification logic. So, it is just the problem that iteration logic is changed to the recursive unexpectedly due to the notification mechanism. Reproducer: ip link add team0 type team ethtool -K team0 lro on for i in {1..200} do ip link add team$i master team0 type team ethtool -K team$i lro on done ethtool -K team0 lro off In order to fix it, the notifier_ctx member of bonding/team is introduced.
CVE-2023-54019 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/psi: use kernfs polling functions for PSI trigger polling Destroying psi trigger in cgroup_file_release causes UAF issues when a cgroup is removed from under a polling process. This is happening because cgroup removal causes a call to cgroup_file_release while the actual file is still alive. Destroying the trigger at this point would also destroy its waitqueue head and if there is still a polling process on that file accessing the waitqueue, it will step on the freed pointer: do_select vfs_poll do_rmdir cgroup_rmdir kernfs_drain_open_files cgroup_file_release cgroup_pressure_release psi_trigger_destroy wake_up_pollfree(&t->event_wait) // vfs_poll is unblocked synchronize_rcu kfree(t) poll_freewait -> UAF access to the trigger's waitqueue head Patch [1] fixed this issue for epoll() case using wake_up_pollfree(), however the same issue exists for synchronous poll() case. The root cause of this issue is that the lifecycles of the psi trigger's waitqueue and of the file associated with the trigger are different. Fix this by using kernfs_generic_poll function when polling on cgroup-specific psi triggers. It internally uses kernfs_open_node->poll waitqueue head with its lifecycle tied to the file's lifecycle. This also renders the fix in [1] obsolete, so revert it. [1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()")
CVE-2023-54020 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: sf-pdma: pdma_desc memory leak fix Commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread support for a DMA channel") changed sf_pdma_prep_dma_memcpy() to unconditionally allocate a new sf_pdma_desc each time it is called. The driver previously recycled descs, by checking the in_use flag, only allocating additional descs if the existing one was in use. This logic was removed in commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread support for a DMA channel"), but sf_pdma_free_desc() was not changed to handle the new behaviour. As a result, each time sf_pdma_prep_dma_memcpy() is called, the previous descriptor is leaked, over time leading to memory starvation: unreferenced object 0xffffffe008447300 (size 192): comm "irq/39-mchp_dsc", pid 343, jiffies 4294906910 (age 981.200s) hex dump (first 32 bytes): 00 00 00 ff 00 00 00 00 b8 c1 00 00 00 00 00 00 ................ 00 00 70 08 10 00 00 00 00 00 00 c0 00 00 00 00 ..p............. backtrace: [<00000000064a04f4>] kmemleak_alloc+0x1e/0x28 [<00000000018927a7>] kmem_cache_alloc+0x11e/0x178 [<000000002aea8d16>] sf_pdma_prep_dma_memcpy+0x40/0x112 Add the missing kfree() to sf_pdma_free_desc(), and remove the redundant in_use flag.
CVE-2023-54023 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race between balance and cancel/pause Syzbot reported a panic that looks like this: assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, in fs/btrfs/ioctl.c:465 ------------[ cut here ]------------ kernel BUG at fs/btrfs/messages.c:259! RIP: 0010:btrfs_assertfail+0x2c/0x30 fs/btrfs/messages.c:259 Call Trace: <TASK> btrfs_exclop_balance fs/btrfs/ioctl.c:465 [inline] btrfs_ioctl_balance fs/btrfs/ioctl.c:3564 [inline] btrfs_ioctl+0x531e/0x5b30 fs/btrfs/ioctl.c:4632 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The reproducer is running a balance and a cancel or pause in parallel. The way balance finishes is a bit wonky, if we were paused we need to save the balance_ctl in the fs_info, but clear it otherwise and cleanup. However we rely on the return values being specific errors, or having a cancel request or no pause request. If balance completes and returns 0, but we have a pause or cancel request we won't do the appropriate cleanup, and then the next time we try to start a balance we'll trip this ASSERT. The error handling is just wrong here, we always want to clean up, unless we got -ECANCELLED and we set the appropriate pause flag in the exclusive op. With this patch the reproducer ran for an hour without tripping, previously it would trip in less than a few minutes.
CVE-2023-54036 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl8xxxu: Fix memory leaks with RTL8723BU, RTL8192EU The wifi + bluetooth combo chip RTL8723BU can leak memory (especially?) when it's connected to a bluetooth audio device. The busy bluetooth traffic generates lots of C2H (card to host) messages, which are not freed correctly. To fix this, move the dev_kfree_skb() call in rtl8xxxu_c2hcmd_callback() inside the loop where skb_dequeue() is called. The RTL8192EU leaks memory because the C2H messages are added to the queue and left there forever. (This was fine in the past because it probably wasn't sending any C2H messages until commit e542e66b7c2e ("wifi: rtl8xxxu: gen2: Turn on the rate control"). Since that commit it sends a C2H message when the TX rate changes.) To fix this, delete the check for rf_paths > 1 and the goto. Let the function process the C2H messages from RTL8192EU like the ones from the other chips. Theoretically the RTL8188FU could also leak like RTL8723BU, but it most likely doesn't send C2H messages frequently enough. This change was tested with RTL8723BU by Erhard F. I tested it with RTL8188FU and RTL8192EU.
CVE-2025-12495 1 Openexr 1 Openexr 2025-12-29 7.8 High
Academy Software Foundation OpenEXR EXR File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Academy Software Foundation OpenEXR. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of EXR files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27946.