| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In Eclipse Jersey versions 2.45, 3.0.16, 3.1.9 a race condition can cause ignoring of critical SSL configurations - such as mutual authentication, custom key/trust stores, and other security settings. This issue may result in SSLHandshakeException under normal circumstances, but under certain conditions, it could lead to unauthorized trust in insecure servers (see PoC) |
| In the Linux kernel, the following vulnerability has been resolved:
fs/smb: Fix inconsistent refcnt update
A possible inconsistent update of refcount was identified in `smb2_compound_op`.
Such inconsistent update could lead to possible resource leaks.
Why it is a possible bug:
1. In the comment section of the function, it clearly states that the
reference to `cfile` should be dropped after calling this function.
2. Every control flow path would check and drop the reference to
`cfile`, except the patched one.
3. Existing callers would not handle refcount update of `cfile` if
-ENOMEM is returned.
To fix the bug, an extra goto label "out" is added, to make sure that the
cleanup logic would always be respected. As the problem is caused by the
allocation failure of `vars`, the cleanup logic between label "finished"
and "out" can be safely ignored. According to the definition of function
`is_replayable_error`, the error code of "-ENOMEM" is not recoverable.
Therefore, the replay logic also gets ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
efivarfs: Fix slab-out-of-bounds in efivarfs_d_compare
Observed on kernel 6.6 (present on master as well):
BUG: KASAN: slab-out-of-bounds in memcmp+0x98/0xd0
Call trace:
kasan_check_range+0xe8/0x190
__asan_loadN+0x1c/0x28
memcmp+0x98/0xd0
efivarfs_d_compare+0x68/0xd8
__d_lookup_rcu_op_compare+0x178/0x218
__d_lookup_rcu+0x1f8/0x228
d_alloc_parallel+0x150/0x648
lookup_open.isra.0+0x5f0/0x8d0
open_last_lookups+0x264/0x828
path_openat+0x130/0x3f8
do_filp_open+0x114/0x248
do_sys_openat2+0x340/0x3c0
__arm64_sys_openat+0x120/0x1a0
If dentry->d_name.len < EFI_VARIABLE_GUID_LEN , 'guid' can become
negative, leadings to oob. The issue can be triggered by parallel
lookups using invalid filename:
T1 T2
lookup_open
->lookup
simple_lookup
d_add
// invalid dentry is added to hash list
lookup_open
d_alloc_parallel
__d_lookup_rcu
__d_lookup_rcu_op_compare
hlist_bl_for_each_entry_rcu
// invalid dentry can be retrieved
->d_compare
efivarfs_d_compare
// oob
Fix it by checking 'guid' before cmp. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix potential warning in trace_printk_seq during ftrace_dump
When calling ftrace_dump_one() concurrently with reading trace_pipe,
a WARN_ON_ONCE() in trace_printk_seq() can be triggered due to a race
condition.
The issue occurs because:
CPU0 (ftrace_dump) CPU1 (reader)
echo z > /proc/sysrq-trigger
!trace_empty(&iter)
trace_iterator_reset(&iter) <- len = size = 0
cat /sys/kernel/tracing/trace_pipe
trace_find_next_entry_inc(&iter)
__find_next_entry
ring_buffer_empty_cpu <- all empty
return NULL
trace_printk_seq(&iter.seq)
WARN_ON_ONCE(s->seq.len >= s->seq.size)
In the context between trace_empty() and trace_find_next_entry_inc()
during ftrace_dump, the ring buffer data was consumed by other readers.
This caused trace_find_next_entry_inc to return NULL, failing to populate
`iter.seq`. At this point, due to the prior trace_iterator_reset, both
`iter.seq.len` and `iter.seq.size` were set to 0. Since they are equal,
the WARN_ON_ONCE condition is triggered.
Move the trace_printk_seq() into the if block that checks to make sure the
return value of trace_find_next_entry_inc() is non-NULL in
ftrace_dump_one(), ensuring the 'iter.seq' is properly populated before
subsequent operations. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: initialize more fields in sctp_v6_from_sk()
syzbot found that sin6_scope_id was not properly initialized,
leading to undefined behavior.
Clear sin6_scope_id and sin6_flowinfo.
BUG: KMSAN: uninit-value in __sctp_v6_cmp_addr+0x887/0x8c0 net/sctp/ipv6.c:649
__sctp_v6_cmp_addr+0x887/0x8c0 net/sctp/ipv6.c:649
sctp_inet6_cmp_addr+0x4f2/0x510 net/sctp/ipv6.c:983
sctp_bind_addr_conflict+0x22a/0x3b0 net/sctp/bind_addr.c:390
sctp_get_port_local+0x21eb/0x2440 net/sctp/socket.c:8452
sctp_get_port net/sctp/socket.c:8523 [inline]
sctp_listen_start net/sctp/socket.c:8567 [inline]
sctp_inet_listen+0x710/0xfd0 net/sctp/socket.c:8636
__sys_listen_socket net/socket.c:1912 [inline]
__sys_listen net/socket.c:1927 [inline]
__do_sys_listen net/socket.c:1932 [inline]
__se_sys_listen net/socket.c:1930 [inline]
__x64_sys_listen+0x343/0x4c0 net/socket.c:1930
x64_sys_call+0x271d/0x3e20 arch/x86/include/generated/asm/syscalls_64.h:51
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Local variable addr.i.i created at:
sctp_get_port net/sctp/socket.c:8515 [inline]
sctp_listen_start net/sctp/socket.c:8567 [inline]
sctp_inet_listen+0x650/0xfd0 net/sctp/socket.c:8636
__sys_listen_socket net/socket.c:1912 [inline]
__sys_listen net/socket.c:1927 [inline]
__do_sys_listen net/socket.c:1932 [inline]
__se_sys_listen net/socket.c:1930 [inline]
__x64_sys_listen+0x343/0x4c0 net/socket.c:1930 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hid-ntrig: fix unable to handle page fault in ntrig_report_version()
in ntrig_report_version(), hdev parameter passed from hid_probe().
sending descriptor to /dev/uhid can make hdev->dev.parent->parent to null
if hdev->dev.parent->parent is null, usb_dev has
invalid address(0xffffffffffffff58) that hid_to_usb_dev(hdev) returned
when usb_rcvctrlpipe() use usb_dev,it trigger
page fault error for address(0xffffffffffffff58)
add null check logic to ntrig_report_version()
before calling hid_to_usb_dev() |
| In the Linux kernel, the following vulnerability has been resolved:
HID: multitouch: fix slab out-of-bounds access in mt_report_fixup()
A malicious HID device can trigger a slab out-of-bounds during
mt_report_fixup() by passing in report descriptor smaller than
607 bytes. mt_report_fixup() attempts to patch byte offset 607
of the descriptor with 0x25 by first checking if byte offset
607 is 0x15 however it lacks bounds checks to verify if the
descriptor is big enough before conducting this check. Fix
this bug by ensuring the descriptor size is at least 608
bytes before accessing it.
Below is the KASAN splat after the out of bounds access happens:
[ 13.671954] ==================================================================
[ 13.672667] BUG: KASAN: slab-out-of-bounds in mt_report_fixup+0x103/0x110
[ 13.673297] Read of size 1 at addr ffff888103df39df by task kworker/0:1/10
[ 13.673297]
[ 13.673297] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.15.0-00005-gec5d573d83f4-dirty #3
[ 13.673297] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/04
[ 13.673297] Call Trace:
[ 13.673297] <TASK>
[ 13.673297] dump_stack_lvl+0x5f/0x80
[ 13.673297] print_report+0xd1/0x660
[ 13.673297] kasan_report+0xe5/0x120
[ 13.673297] __asan_report_load1_noabort+0x18/0x20
[ 13.673297] mt_report_fixup+0x103/0x110
[ 13.673297] hid_open_report+0x1ef/0x810
[ 13.673297] mt_probe+0x422/0x960
[ 13.673297] hid_device_probe+0x2e2/0x6f0
[ 13.673297] really_probe+0x1c6/0x6b0
[ 13.673297] __driver_probe_device+0x24f/0x310
[ 13.673297] driver_probe_device+0x4e/0x220
[ 13.673297] __device_attach_driver+0x169/0x320
[ 13.673297] bus_for_each_drv+0x11d/0x1b0
[ 13.673297] __device_attach+0x1b8/0x3e0
[ 13.673297] device_initial_probe+0x12/0x20
[ 13.673297] bus_probe_device+0x13d/0x180
[ 13.673297] device_add+0xe3a/0x1670
[ 13.673297] hid_add_device+0x31d/0xa40
[...] |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor: idle: Check acpi_fetch_acpi_dev() return value
The return value of acpi_fetch_acpi_dev() could be NULL, which would
cause a NULL pointer dereference to occur in acpi_device_hid().
[ rjw: Subject and changelog edits, added empty line after if () ] |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: abort transaction on unexpected eb generation at btrfs_copy_root()
If we find an unexpected generation for the extent buffer we are cloning
at btrfs_copy_root(), we just WARN_ON() and don't error out and abort the
transaction, meaning we allow to persist metadata with an unexpected
generation. Instead of warning only, abort the transaction and return
-EUCLEAN. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix the setting of capabilities when automounting a new filesystem
Capabilities cannot be inherited when we cross into a new filesystem.
They need to be reset to the minimal defaults, and then probed for
again. |
| In the Linux kernel, the following vulnerability has been resolved:
block: avoid possible overflow for chunk_sectors check in blk_stack_limits()
In blk_stack_limits(), we check that the t->chunk_sectors value is a
multiple of the t->physical_block_size value.
However, by finding the chunk_sectors value in bytes, we may overflow
the unsigned int which holds chunk_sectors, so change the check to be
based on sectors. |
| The Injection Guard WordPress plugin before 1.2.8 does not escape the $_SERVER['REQUEST_URI'] parameter before outputting it back in an attribute, which could lead to Reflected Cross-Site Scripting in old web browsers |
| Custom Question Answering Elevation of Privilege Vulnerability |
| In the Linux kernel, the following vulnerability has been resolved:
pcmcia: Add error handling for add_interval() in do_validate_mem()
In the do_validate_mem(), the call to add_interval() does not
handle errors. If kmalloc() fails in add_interval(), it could
result in a null pointer being inserted into the linked list,
leading to illegal memory access when sub_interval() is called
next.
This patch adds an error handling for the add_interval(). If
add_interval() returns an error, the function will return early
with the error code. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: Fix memory leak in _samsung_clk_register_pll()
If clk_register() fails, @pll->rate_table may have allocated memory by
kmemdup(), so it needs to be freed, otherwise will cause memory leak
issue, this patch fixes it. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/uffd: fix warning without PTE_MARKER_UFFD_WP compiled in
When PTE_MARKER_UFFD_WP not configured, it's still possible to reach pte
marker code and trigger an warning. Add a few CONFIG_PTE_MARKER_UFFD_WP
ifdefs to make sure the code won't be reached when not compiled in. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/reclaim: avoid divide-by-zero in damon_reclaim_apply_parameters()
When creating a new scheme of DAMON_RECLAIM, the calculation of
'min_age_region' uses 'aggr_interval' as the divisor, which may lead to
division-by-zero errors. Fix it by directly returning -EINVAL when such a
case occurs. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Fix crash on hci_create_cis_sync
When attempting to connect multiple ISO sockets without using
DEFER_SETUP may result in the following crash:
BUG: KASAN: null-ptr-deref in hci_create_cis_sync+0x18b/0x2b0
Read of size 2 at addr 0000000000000036 by task kworker/u3:1/50
CPU: 0 PID: 50 Comm: kworker/u3:1 Not tainted
6.0.0-rc7-02243-gb84a13ff4eda #4373
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009),
BIOS 1.16.0-1.fc36 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x19/0x27
kasan_report+0xbc/0xf0
? hci_create_cis_sync+0x18b/0x2b0
hci_create_cis_sync+0x18b/0x2b0
? get_link_mode+0xd0/0xd0
? __ww_mutex_lock_slowpath+0x10/0x10
? mutex_lock+0xe0/0xe0
? get_link_mode+0xd0/0xd0
hci_cmd_sync_work+0x111/0x190
process_one_work+0x427/0x650
worker_thread+0x87/0x750
? process_one_work+0x650/0x650
kthread+0x14e/0x180
? kthread_exit+0x50/0x50
ret_from_fork+0x22/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
ARC: mm: fix leakage of memory allocated for PTE
Since commit d9820ff ("ARC: mm: switch pgtable_t back to struct page *")
a memory leakage problem occurs. Memory allocated for page table entries
not released during process termination. This issue can be reproduced by
a small program that allocates a large amount of memory. After several
runs, you'll see that the amount of free memory has reduced and will
continue to reduce after each run. All ARC CPUs are effected by this
issue. The issue was introduced since the kernel stable release v5.15-rc1.
As described in commit d9820ff after switch pgtable_t back to struct
page *, a pointer to "struct page" and appropriate functions are used to
allocate and free a memory page for PTEs, but the pmd_pgtable macro hasn't
changed and returns the direct virtual address from the PMD (PGD) entry.
Than this address used as a parameter in the __pte_free() and as a result
this function couldn't release memory page allocated for PTEs.
Fix this issue by changing the pmd_pgtable macro and returning pointer to
struct page. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: Reinject transport-mode packets through workqueue
The following warning is displayed when the tcp6-multi-diffip11 stress
test case of the LTP test suite is tested:
watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [ns-tcpserver:48198]
CPU: 0 PID: 48198 Comm: ns-tcpserver Kdump: loaded Not tainted 6.0.0-rc6+ #39
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : des3_ede_encrypt+0x27c/0x460 [libdes]
lr : 0x3f
sp : ffff80000ceaa1b0
x29: ffff80000ceaa1b0 x28: ffff0000df056100 x27: ffff0000e51e5280
x26: ffff80004df75030 x25: ffff0000e51e4600 x24: 000000000000003b
x23: 0000000000802080 x22: 000000000000003d x21: 0000000000000038
x20: 0000000080000020 x19: 000000000000000a x18: 0000000000000033
x17: ffff0000e51e4780 x16: ffff80004e2d1448 x15: ffff80004e2d1248
x14: ffff0000e51e4680 x13: ffff80004e2d1348 x12: ffff80004e2d1548
x11: ffff80004e2d1848 x10: ffff80004e2d1648 x9 : ffff80004e2d1748
x8 : ffff80004e2d1948 x7 : 000000000bcaf83d x6 : 000000000000001b
x5 : ffff80004e2d1048 x4 : 00000000761bf3bf x3 : 000000007f1dd0a3
x2 : ffff0000e51e4780 x1 : ffff0000e3b9a2f8 x0 : 00000000db44e872
Call trace:
des3_ede_encrypt+0x27c/0x460 [libdes]
crypto_des3_ede_encrypt+0x1c/0x30 [des_generic]
crypto_cbc_encrypt+0x148/0x190
crypto_skcipher_encrypt+0x2c/0x40
crypto_authenc_encrypt+0xc8/0xfc [authenc]
crypto_aead_encrypt+0x2c/0x40
echainiv_encrypt+0x144/0x1a0 [echainiv]
crypto_aead_encrypt+0x2c/0x40
esp6_output_tail+0x1c8/0x5d0 [esp6]
esp6_output+0x120/0x278 [esp6]
xfrm_output_one+0x458/0x4ec
xfrm_output_resume+0x6c/0x1f0
xfrm_output+0xac/0x4ac
__xfrm6_output+0x130/0x270
xfrm6_output+0x60/0xec
ip6_xmit+0x2ec/0x5bc
inet6_csk_xmit+0xbc/0x10c
__tcp_transmit_skb+0x460/0x8c0
tcp_write_xmit+0x348/0x890
__tcp_push_pending_frames+0x44/0x110
tcp_rcv_established+0x3c8/0x720
tcp_v6_do_rcv+0xdc/0x4a0
tcp_v6_rcv+0xc24/0xcb0
ip6_protocol_deliver_rcu+0xf0/0x574
ip6_input_finish+0x48/0x7c
ip6_input+0x48/0xc0
ip6_rcv_finish+0x80/0x9c
xfrm_trans_reinject+0xb0/0xf4
tasklet_action_common.constprop.0+0xf8/0x134
tasklet_action+0x30/0x3c
__do_softirq+0x128/0x368
do_softirq+0xb4/0xc0
__local_bh_enable_ip+0xb0/0xb4
put_cpu_fpsimd_context+0x40/0x70
kernel_neon_end+0x20/0x40
sha1_base_do_update.constprop.0.isra.0+0x11c/0x140 [sha1_ce]
sha1_ce_finup+0x94/0x110 [sha1_ce]
crypto_shash_finup+0x34/0xc0
hmac_finup+0x48/0xe0
crypto_shash_finup+0x34/0xc0
shash_digest_unaligned+0x74/0x90
crypto_shash_digest+0x4c/0x9c
shash_ahash_digest+0xc8/0xf0
shash_async_digest+0x28/0x34
crypto_ahash_digest+0x48/0xcc
crypto_authenc_genicv+0x88/0xcc [authenc]
crypto_authenc_encrypt+0xd8/0xfc [authenc]
crypto_aead_encrypt+0x2c/0x40
echainiv_encrypt+0x144/0x1a0 [echainiv]
crypto_aead_encrypt+0x2c/0x40
esp6_output_tail+0x1c8/0x5d0 [esp6]
esp6_output+0x120/0x278 [esp6]
xfrm_output_one+0x458/0x4ec
xfrm_output_resume+0x6c/0x1f0
xfrm_output+0xac/0x4ac
__xfrm6_output+0x130/0x270
xfrm6_output+0x60/0xec
ip6_xmit+0x2ec/0x5bc
inet6_csk_xmit+0xbc/0x10c
__tcp_transmit_skb+0x460/0x8c0
tcp_write_xmit+0x348/0x890
__tcp_push_pending_frames+0x44/0x110
tcp_push+0xb4/0x14c
tcp_sendmsg_locked+0x71c/0xb64
tcp_sendmsg+0x40/0x6c
inet6_sendmsg+0x4c/0x80
sock_sendmsg+0x5c/0x6c
__sys_sendto+0x128/0x15c
__arm64_sys_sendto+0x30/0x40
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0x170/0x194
do_el0_svc+0x38/0x4c
el0_svc+0x28/0xe0
el0t_64_sync_handler+0xbc/0x13c
el0t_64_sync+0x180/0x184
Get softirq info by bcc tool:
./softirqs -NT 10
Tracing soft irq event time... Hit Ctrl-C to end.
15:34:34
SOFTIRQ TOTAL_nsecs
block 158990
timer 20030920
sched 46577080
net_rx 676746820
tasklet 9906067650
15:34:45
SOFTIRQ TOTAL_nsecs
block 86100
sched 38849790
net_rx
---truncated--- |