| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper input verification issue exists in Cybozu Garoon 5.0.0 to 6.0.3, which may lead to unauthorized alteration of portal settings, potentially blocking access to the product. |
| In the Linux kernel, the following vulnerability has been resolved:
inet: frags: drop fraglist conntrack references
Jakub added a warning in nf_conntrack_cleanup_net_list() to make debugging
leaked skbs/conntrack references more obvious.
syzbot reports this as triggering, and I can also reproduce this via
ip_defrag.sh selftest:
conntrack cleanup blocked for 60s
WARNING: net/netfilter/nf_conntrack_core.c:2512
[..]
conntrack clenups gets stuck because there are skbs with still hold nf_conn
references via their frag_list.
net.core.skb_defer_max=0 makes the hang disappear.
Eric Dumazet points out that skb_release_head_state() doesn't follow the
fraglist.
ip_defrag.sh can only reproduce this problem since
commit 6471658dc66c ("udp: use skb_attempt_defer_free()"), but AFAICS this
problem could happen with TCP as well if pmtu discovery is off.
The relevant problem path for udp is:
1. netns emits fragmented packets
2. nf_defrag_v6_hook reassembles them (in output hook)
3. reassembled skb is tracked (skb owns nf_conn reference)
4. ip6_output refragments
5. refragmented packets also own nf_conn reference (ip6_fragment
calls ip6_copy_metadata())
6. on input path, nf_defrag_v6_hook skips defragmentation: the
fragments already have skb->nf_conn attached
7. skbs are reassembled via ipv6_frag_rcv()
8. skb_consume_udp -> skb_attempt_defer_free() -> skb ends up
in pcpu freelist, but still has nf_conn reference.
Possible solutions:
1 let defrag engine drop nf_conn entry, OR
2 export kick_defer_list_purge() and call it from the conntrack
netns exit callback, OR
3 add skb_has_frag_list() check to skb_attempt_defer_free()
2 & 3 also solve ip_defrag.sh hang but share same drawback:
Such reassembled skbs, queued to socket, can prevent conntrack module
removal until userspace has consumed the packet. While both tcp and udp
stack do call nf_reset_ct() before placing skb on socket queue, that
function doesn't iterate frag_list skbs.
Therefore drop nf_conn entries when they are placed in defrag queue.
Keep the nf_conn entry of the first (offset 0) skb so that reassembled
skb retains nf_conn entry for sake of TX path.
Note that fixes tag is incorrect; it points to the commit introducing the
'ip_defrag.sh reproducible problem': no need to backport this patch to
every stable kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix error handling in the init_task on load
If the init_task fails during a driver load, we end up without vports and
netdevs, effectively failing the entire process. In that state a
subsequent reset will result in a crash as the service task attempts to
access uninitialized resources. Following trace is from an error in the
init_task where the CREATE_VPORT (op 501) is rejected by the FW:
[40922.763136] idpf 0000:83:00.0: Device HW Reset initiated
[40924.449797] idpf 0000:83:00.0: Transaction failed (op 501)
[40958.148190] idpf 0000:83:00.0: HW reset detected
[40958.161202] BUG: kernel NULL pointer dereference, address: 00000000000000a8
...
[40958.168094] Workqueue: idpf-0000:83:00.0-vc_event idpf_vc_event_task [idpf]
[40958.168865] RIP: 0010:idpf_vc_event_task+0x9b/0x350 [idpf]
...
[40958.177932] Call Trace:
[40958.178491] <TASK>
[40958.179040] process_one_work+0x226/0x6d0
[40958.179609] worker_thread+0x19e/0x340
[40958.180158] ? __pfx_worker_thread+0x10/0x10
[40958.180702] kthread+0x10f/0x250
[40958.181238] ? __pfx_kthread+0x10/0x10
[40958.181774] ret_from_fork+0x251/0x2b0
[40958.182307] ? __pfx_kthread+0x10/0x10
[40958.182834] ret_from_fork_asm+0x1a/0x30
[40958.183370] </TASK>
Fix the error handling in the init_task to make sure the service and
mailbox tasks are disabled if the error happens during load. These are
started in idpf_vc_core_init(), which spawns the init_task and has no way
of knowing if it failed. If the error happens on reset, following
successful driver load, the tasks can still run, as that will allow the
netdevs to attempt recovery through another reset. Stop the PTP callbacks
either way as those will be restarted by the call to idpf_vc_core_init()
during a successful reset. |
| In the Linux kernel, the following vulnerability has been resolved:
net: marvell: prestera: fix NULL dereference on devlink_alloc() failure
devlink_alloc() may return NULL on allocation failure, but
prestera_devlink_alloc() unconditionally calls devlink_priv() on
the returned pointer.
This leads to a NULL pointer dereference if devlink allocation fails.
Add a check for a NULL devlink pointer and return NULL early to avoid
the crash. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leak in idpf_vc_core_deinit()
Make sure to free hw->lan_regs. Reported by kmemleak during reset:
unreferenced object 0xff1b913d02a936c0 (size 96):
comm "kworker/u258:14", pid 2174, jiffies 4294958305
hex dump (first 32 bytes):
00 00 00 c0 a8 ba 2d ff 00 00 00 00 00 00 00 00 ......-.........
00 00 40 08 00 00 00 00 00 00 25 b3 a8 ba 2d ff ..@.......%...-.
backtrace (crc 36063c4f):
__kmalloc_noprof+0x48f/0x890
idpf_vc_core_init+0x6ce/0x9b0 [idpf]
idpf_vc_event_task+0x1fb/0x350 [idpf]
process_one_work+0x226/0x6d0
worker_thread+0x19e/0x340
kthread+0x10f/0x250
ret_from_fork+0x251/0x2b0
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leak in idpf_vport_rel()
Free vport->rx_ptype_lkup in idpf_vport_rel() to avoid leaking memory
during a reset. Reported by kmemleak:
unreferenced object 0xff450acac838a000 (size 4096):
comm "kworker/u258:5", pid 7732, jiffies 4296830044
hex dump (first 32 bytes):
00 00 00 00 00 10 00 00 00 10 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 ................
backtrace (crc 3da81902):
__kmalloc_cache_noprof+0x469/0x7a0
idpf_send_get_rx_ptype_msg+0x90/0x570 [idpf]
idpf_init_task+0x1ec/0x8d0 [idpf]
process_one_work+0x226/0x6d0
worker_thread+0x19e/0x340
kthread+0x10f/0x250
ret_from_fork+0x251/0x2b0
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: qcom: gpi: Fix memory leak in gpi_peripheral_config()
Fix a memory leak in gpi_peripheral_config() where the original memory
pointed to by gchan->config could be lost if krealloc() fails.
The issue occurs when:
1. gchan->config points to previously allocated memory
2. krealloc() fails and returns NULL
3. The function directly assigns NULL to gchan->config, losing the
reference to the original memory
4. The original memory becomes unreachable and cannot be freed
Fix this by using a temporary variable to hold the krealloc() result
and only updating gchan->config when the allocation succeeds.
Found via static analysis and code review. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_pch_pic_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_pch_pic_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_ipi_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_ipi_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_eiointc_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_eiointc_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak
In gs_can_open(), the URBs for USB-in transfers are allocated, added to the
parent->rx_submitted anchor and submitted. In the complete callback
gs_usb_receive_bulk_callback(), the URB is processed and resubmitted. In
gs_can_close() the URBs are freed by calling
usb_kill_anchored_urbs(parent->rx_submitted).
However, this does not take into account that the USB framework unanchors
the URB before the complete function is called. This means that once an
in-URB has been completed, it is no longer anchored and is ultimately not
released in gs_can_close().
Fix the memory leak by anchoring the URB in the
gs_usb_receive_bulk_callback() to the parent->rx_submitted anchor. |
| In the Linux kernel, the following vulnerability has been resolved:
can: etas_es58x: allow partial RX URB allocation to succeed
When es58x_alloc_rx_urbs() fails to allocate the requested number of
URBs but succeeds in allocating some, it returns an error code.
This causes es58x_open() to return early, skipping the cleanup label
'free_urbs', which leads to the anchored URBs being leaked.
As pointed out by maintainer Vincent Mailhol, the driver is designed
to handle partial URB allocation gracefully. Therefore, partial
allocation should not be treated as a fatal error.
Modify es58x_alloc_rx_urbs() to return 0 if at least one URB has been
allocated, restoring the intended behavior and preventing the leak
in es58x_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
pnfs/flexfiles: Fix memory leak in nfs4_ff_alloc_deviceid_node()
In nfs4_ff_alloc_deviceid_node(), if the allocation for ds_versions fails,
the function jumps to the out_scratch label without freeing the already
allocated dsaddrs list, leading to a memory leak.
Fix this by jumping to the out_err_drain_dsaddrs label, which properly
frees the dsaddrs list before cleaning up other resources. |
| RaspAP raspap-webgui versions prior to 3.3.6 contain an OS command injection vulnerability. If exploited, an arbitrary OS command may be executed by a user who can log in to the product. |
| SunFounder Pironman Dashboard (pm_dashboard) version 1.3.13 and prior contain a path traversal vulnerability in the log file API endpoints. An unauthenticated remote attacker can supply traversal sequences via the filename parameter to read and delete arbitrary files. Successful exploitation can disclose sensitive information and delete critical system files, resulting in data loss and potential system compromise or denial of service. |
| An unauthenticated user can upload arbitrary files to execute remote code, leading to privilege escalation in MagicInfo9 Server.
This issue affects MagicINFO 9 Server: less than 21.1090.1. |
| OpenClaw (aka clawdbot or Moltbot) before 2026.1.29 obtains a gatewayUrl value from a query string and automatically makes a WebSocket connection without prompting, sending a token value. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gud: fix NULL fb and crtc dereferences on USB disconnect
On disconnect drm_atomic_helper_disable_all() is called which
sets both the fb and crtc for a plane to NULL before invoking a commit.
This causes a kernel oops on every display disconnect.
Add guards for those dereferences. |
| A flaw was found in Keycloak’s CIBA feature where insufficient validation of client-configured backchannel notification endpoints could allow blind server-side requests to internal services. |
| In Modem, there is a possible system crash due to improper input validation. This could lead to remote denial of service, if a UE has connected to a rogue base station controlled by the attacker, with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: MOLY00693083; Issue ID: MSV-5928. |