Search

Search Results (327820 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53377 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cifs: prevent use-after-free by freeing the cfile later In smb2_compound_op we have a possible use-after-free which can cause hard to debug problems later on. This was revealed during stress testing with KASAN enabled kernel. Fixing it by moving the cfile free call to a few lines below, after the usage.
CVE-2023-53376 1 Linux 1 Linux Kernel 2026-01-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Use number of bits to manage bitmap sizes To allocate bitmaps, the mpi3mr driver calculates sizes of bitmaps using byte as unit. However, bitmap helper functions assume that bitmaps are allocated using unsigned long as unit. This gap causes memory access beyond the bitmap sizes and results in "BUG: KASAN: slab-out-of-bounds". The BUG was observed at firmware download to eHBA-9600. Call trace indicated that the out-of-bounds access happened in find_first_zero_bit() called from mpi3mr_send_event_ack() for miroc->evtack_cmds_bitmap. To fix the BUG, do not use bytes to manage bitmap sizes. Instead, use number of bits, and call bitmap helper functions which take number of bits as arguments. For memory allocation, call bitmap_zalloc() instead of kzalloc() and krealloc(). For memory free, call bitmap_free() instead of kfree(). For zero clear, call bitmap_clear() instead of memset(). Remove three fields for bitmap byte sizes in struct scmd_priv which are no longer required. Replace the field dev_handle_bitmap_sz with dev_handle_bitmap_bits to keep number of bits of removepend_bitmap across resize.
CVE-2025-15020 2 Gothamdev, Wordpress 2 Gotham Block Extra Light, Wordpress 2026-01-14 6.5 Medium
The Gotham Block Extra Light plugin for WordPress is vulnerable to Arbitrary File Read in all versions up to, and including, 1.5.0 via the 'ghostban' shortcode. This makes it possible for authenticated attackers, with contributor-level access and above, to read the contents of arbitrary files on the server, which can contain sensitive information.
CVE-2023-53375 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Free error logs of tracing instances When a tracing instance is removed, the error messages that hold errors that occurred in the instance needs to be freed. The following reports a memory leak: # cd /sys/kernel/tracing # mkdir instances/foo # echo 'hist:keys=x' > instances/foo/events/sched/sched_switch/trigger # cat instances/foo/error_log [ 117.404795] hist:sched:sched_switch: error: Couldn't find field Command: hist:keys=x ^ # rmdir instances/foo Then check for memory leaks: # echo scan > /sys/kernel/debug/kmemleak # cat /sys/kernel/debug/kmemleak unreferenced object 0xffff88810d8ec700 (size 192): comm "bash", pid 869, jiffies 4294950577 (age 215.752s) hex dump (first 32 bytes): 60 dd 68 61 81 88 ff ff 60 dd 68 61 81 88 ff ff `.ha....`.ha.... a0 30 8c 83 ff ff ff ff 26 00 0a 00 00 00 00 00 .0......&....... backtrace: [<00000000dae26536>] kmalloc_trace+0x2a/0xa0 [<00000000b2938940>] tracing_log_err+0x277/0x2e0 [<000000004a0e1b07>] parse_atom+0x966/0xb40 [<0000000023b24337>] parse_expr+0x5f3/0xdb0 [<00000000594ad074>] event_hist_trigger_parse+0x27f8/0x3560 [<00000000293a9645>] trigger_process_regex+0x135/0x1a0 [<000000005c22b4f2>] event_trigger_write+0x87/0xf0 [<000000002cadc509>] vfs_write+0x162/0x670 [<0000000059c3b9be>] ksys_write+0xca/0x170 [<00000000f1cddc00>] do_syscall_64+0x3e/0xc0 [<00000000868ac68c>] entry_SYSCALL_64_after_hwframe+0x72/0xdc unreferenced object 0xffff888170c35a00 (size 32): comm "bash", pid 869, jiffies 4294950577 (age 215.752s) hex dump (first 32 bytes): 0a 20 20 43 6f 6d 6d 61 6e 64 3a 20 68 69 73 74 . Command: hist 3a 6b 65 79 73 3d 78 0a 00 00 00 00 00 00 00 00 :keys=x......... backtrace: [<000000006a747de5>] __kmalloc+0x4d/0x160 [<000000000039df5f>] tracing_log_err+0x29b/0x2e0 [<000000004a0e1b07>] parse_atom+0x966/0xb40 [<0000000023b24337>] parse_expr+0x5f3/0xdb0 [<00000000594ad074>] event_hist_trigger_parse+0x27f8/0x3560 [<00000000293a9645>] trigger_process_regex+0x135/0x1a0 [<000000005c22b4f2>] event_trigger_write+0x87/0xf0 [<000000002cadc509>] vfs_write+0x162/0x670 [<0000000059c3b9be>] ksys_write+0xca/0x170 [<00000000f1cddc00>] do_syscall_64+0x3e/0xc0 [<00000000868ac68c>] entry_SYSCALL_64_after_hwframe+0x72/0xdc The problem is that the error log needs to be freed when the instance is removed.
CVE-2023-53374 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: fail SCO/ISO via hci_conn_failed if ACL gone early Not calling hci_(dis)connect_cfm before deleting conn referred to by a socket generally results to use-after-free. When cleaning up SCO connections when the parent ACL is deleted too early, use hci_conn_failed to do the connection cleanup properly. We also need to clean up ISO connections in a similar situation when connecting has started but LE Create CIS is not yet sent, so do it too here.
CVE-2023-53373 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: crypto: seqiv - Handle EBUSY correctly As it is seqiv only handles the special return value of EINPROGERSS, which means that in all other cases it will free data related to the request. However, as the caller of seqiv may specify MAY_BACKLOG, we also need to expect EBUSY and treat it in the same way. Otherwise backlogged requests will trigger a use-after-free.
CVE-2023-53372 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: sctp: fix a potential overflow in sctp_ifwdtsn_skip Currently, when traversing ifwdtsn skips with _sctp_walk_ifwdtsn, it only checks the pos against the end of the chunk. However, the data left for the last pos may be < sizeof(struct sctp_ifwdtsn_skip), and dereference it as struct sctp_ifwdtsn_skip may cause coverflow. This patch fixes it by checking the pos against "the end of the chunk - sizeof(struct sctp_ifwdtsn_skip)" in sctp_ifwdtsn_skip, similar to sctp_fwdtsn_skip.
CVE-2023-53371 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: fix memory leak in mlx5e_fs_tt_redirect_any_create The memory pointed to by the fs->any pointer is not freed in the error path of mlx5e_fs_tt_redirect_any_create, which can lead to a memory leak. Fix by freeing the memory in the error path, thereby making the error path identical to mlx5e_fs_tt_redirect_any_destroy().
CVE-2023-53370 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix memory leak in mes self test The fences associated with mes queue have to be freed up during amdgpu_ring_fini.
CVE-2023-53369 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dcb: choose correct policy to parse DCB_ATTR_BCN The dcbnl_bcn_setcfg uses erroneous policy to parse tb[DCB_ATTR_BCN], which is introduced in commit 859ee3c43812 ("DCB: Add support for DCB BCN"). Please see the comment in below code static int dcbnl_bcn_setcfg(...) { ... ret = nla_parse_nested_deprecated(..., dcbnl_pfc_up_nest, .. ) // !!! dcbnl_pfc_up_nest for attributes // DCB_PFC_UP_ATTR_0 to DCB_PFC_UP_ATTR_ALL in enum dcbnl_pfc_up_attrs ... for (i = DCB_BCN_ATTR_RP_0; i <= DCB_BCN_ATTR_RP_7; i++) { // !!! DCB_BCN_ATTR_RP_0 to DCB_BCN_ATTR_RP_7 in enum dcbnl_bcn_attrs ... value_byte = nla_get_u8(data[i]); ... } ... for (i = DCB_BCN_ATTR_BCNA_0; i <= DCB_BCN_ATTR_RI; i++) { // !!! DCB_BCN_ATTR_BCNA_0 to DCB_BCN_ATTR_RI in enum dcbnl_bcn_attrs ... value_int = nla_get_u32(data[i]); ... } ... } That is, the nla_parse_nested_deprecated uses dcbnl_pfc_up_nest attributes to parse nlattr defined in dcbnl_pfc_up_attrs. But the following access code fetch each nlattr as dcbnl_bcn_attrs attributes. By looking up the associated nla_policy for dcbnl_bcn_attrs. We can find the beginning part of these two policies are "same". static const struct nla_policy dcbnl_pfc_up_nest[...] = { [DCB_PFC_UP_ATTR_0] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_1] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_2] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_3] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_4] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_5] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_6] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_7] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_ALL] = {.type = NLA_FLAG}, }; static const struct nla_policy dcbnl_bcn_nest[...] = { [DCB_BCN_ATTR_RP_0] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_1] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_2] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_3] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_4] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_5] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_6] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_7] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_ALL] = {.type = NLA_FLAG}, // from here is somewhat different [DCB_BCN_ATTR_BCNA_0] = {.type = NLA_U32}, ... [DCB_BCN_ATTR_ALL] = {.type = NLA_FLAG}, }; Therefore, the current code is buggy and this nla_parse_nested_deprecated could overflow the dcbnl_pfc_up_nest and use the adjacent nla_policy to parse attributes from DCB_BCN_ATTR_BCNA_0. Hence use the correct policy dcbnl_bcn_nest to parse the nested tb[DCB_ATTR_BCN] TLV.
CVE-2023-53368 1 Linux 1 Linux Kernel 2026-01-14 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix race issue between cpu buffer write and swap Warning happened in rb_end_commit() at code: if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing))) WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142 rb_commit+0x402/0x4a0 Call Trace: ring_buffer_unlock_commit+0x42/0x250 trace_buffer_unlock_commit_regs+0x3b/0x250 trace_event_buffer_commit+0xe5/0x440 trace_event_buffer_reserve+0x11c/0x150 trace_event_raw_event_sched_switch+0x23c/0x2c0 __traceiter_sched_switch+0x59/0x80 __schedule+0x72b/0x1580 schedule+0x92/0x120 worker_thread+0xa0/0x6f0 It is because the race between writing event into cpu buffer and swapping cpu buffer through file per_cpu/cpu0/snapshot: Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1 -------- -------- tracing_snapshot_write() [...] ring_buffer_lock_reserve() cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a'; [...] rb_reserve_next_event() [...] ring_buffer_swap_cpu() if (local_read(&cpu_buffer_a->committing)) goto out_dec; if (local_read(&cpu_buffer_b->committing)) goto out_dec; buffer_a->buffers[cpu] = cpu_buffer_b; buffer_b->buffers[cpu] = cpu_buffer_a; // 2. cpu_buffer has swapped here. rb_start_commit(cpu_buffer); if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { // 3. This check passed due to 'cpu_buffer->buffer' [...] // has not changed here. return NULL; } cpu_buffer_b->buffer = buffer_a; cpu_buffer_a->buffer = buffer_b; [...] // 4. Reserve event from 'cpu_buffer_a'. ring_buffer_unlock_commit() [...] cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!! rb_commit(cpu_buffer) rb_end_commit() // 6. WARN for the wrong 'committing' state !!! Based on above analysis, we can easily reproduce by following testcase: ``` bash #!/bin/bash dmesg -n 7 sysctl -w kernel.panic_on_warn=1 TR=/sys/kernel/tracing echo 7 > ${TR}/buffer_size_kb echo "sched:sched_switch" > ${TR}/set_event while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & ``` To fix it, IIUC, we can use smp_call_function_single() to do the swap on the target cpu where the buffer is located, so that above race would be avoided.
CVE-2023-53367 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: accel/habanalabs: fix mem leak in capture user mappings This commit fixes a memory leak caused when clearing the user_mappings info when a new context is opened immediately after user_mapping is captured and a hard reset is performed.
CVE-2023-53366 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: be a bit more careful in checking for NULL bdev while polling Wei reports a crash with an application using polled IO: PGD 14265e067 P4D 14265e067 PUD 47ec50067 PMD 0 Oops: 0000 [#1] SMP CPU: 0 PID: 21915 Comm: iocore_0 Kdump: loaded Tainted: G S 5.12.0-0_fbk12_clang_7346_g1bb6f2e7058f #1 Hardware name: Wiwynn Delta Lake MP T8/Delta Lake-Class2, BIOS Y3DLM08 04/10/2022 RIP: 0010:bio_poll+0x25/0x200 Code: 0f 1f 44 00 00 0f 1f 44 00 00 55 41 57 41 56 41 55 41 54 53 48 83 ec 28 65 48 8b 04 25 28 00 00 00 48 89 44 24 20 48 8b 47 08 <48> 8b 80 70 02 00 00 4c 8b 70 50 8b 6f 34 31 db 83 fd ff 75 25 65 RSP: 0018:ffffc90005fafdf8 EFLAGS: 00010292 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 74b43cd65dd66600 RDX: 0000000000000003 RSI: ffffc90005fafe78 RDI: ffff8884b614e140 RBP: ffff88849964df78 R08: 0000000000000000 R09: 0000000000000008 R10: 0000000000000000 R11: 0000000000000000 R12: ffff88849964df00 R13: ffffc90005fafe78 R14: ffff888137d3c378 R15: 0000000000000001 FS: 00007fd195000640(0000) GS:ffff88903f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000270 CR3: 0000000466121001 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: iocb_bio_iopoll+0x1d/0x30 io_do_iopoll+0xac/0x250 __se_sys_io_uring_enter+0x3c5/0x5a0 ? __x64_sys_write+0x89/0xd0 do_syscall_64+0x2d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x94f225d Code: 24 cc 00 00 00 41 8b 84 24 d0 00 00 00 c1 e0 04 83 e0 10 41 09 c2 8b 33 8b 53 04 4c 8b 43 18 4c 63 4b 0c b8 aa 01 00 00 0f 05 <85> c0 0f 88 85 00 00 00 29 03 45 84 f6 0f 84 88 00 00 00 41 f6 c7 RSP: 002b:00007fd194ffcd88 EFLAGS: 00000202 ORIG_RAX: 00000000000001aa RAX: ffffffffffffffda RBX: 00007fd194ffcdc0 RCX: 00000000094f225d RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000007 RBP: 00007fd194ffcdb0 R08: 0000000000000000 R09: 0000000000000008 R10: 0000000000000001 R11: 0000000000000202 R12: 00007fd269d68030 R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000000 which is due to bio->bi_bdev being NULL. This can happen if we have two tasks doing polled IO, and task B ends up completing IO from task A if they are sharing a poll queue. If task B completes the IO and puts the bio into our cache, then it can allocate that bio again before task A is done polling for it. As that would necessitate a preempt between the two tasks, it's enough to just be a bit more careful in checking for whether or not bio->bi_bdev is NULL.
CVE-2023-53365 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ip6mr: Fix skb_under_panic in ip6mr_cache_report() skbuff: skb_under_panic: text:ffffffff88771f69 len:56 put:-4 head:ffff88805f86a800 data:ffff887f5f86a850 tail:0x88 end:0x2c0 dev:pim6reg ------------[ cut here ]------------ kernel BUG at net/core/skbuff.c:192! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 2 PID: 22968 Comm: kworker/2:11 Not tainted 6.5.0-rc3-00044-g0a8db05b571a #236 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: ipv6_addrconf addrconf_dad_work RIP: 0010:skb_panic+0x152/0x1d0 Call Trace: <TASK> skb_push+0xc4/0xe0 ip6mr_cache_report+0xd69/0x19b0 reg_vif_xmit+0x406/0x690 dev_hard_start_xmit+0x17e/0x6e0 __dev_queue_xmit+0x2d6a/0x3d20 vlan_dev_hard_start_xmit+0x3ab/0x5c0 dev_hard_start_xmit+0x17e/0x6e0 __dev_queue_xmit+0x2d6a/0x3d20 neigh_connected_output+0x3ed/0x570 ip6_finish_output2+0x5b5/0x1950 ip6_finish_output+0x693/0x11c0 ip6_output+0x24b/0x880 NF_HOOK.constprop.0+0xfd/0x530 ndisc_send_skb+0x9db/0x1400 ndisc_send_rs+0x12a/0x6c0 addrconf_dad_completed+0x3c9/0xea0 addrconf_dad_work+0x849/0x1420 process_one_work+0xa22/0x16e0 worker_thread+0x679/0x10c0 ret_from_fork+0x28/0x60 ret_from_fork_asm+0x11/0x20 When setup a vlan device on dev pim6reg, DAD ns packet may sent on reg_vif_xmit(). reg_vif_xmit() ip6mr_cache_report() skb_push(skb, -skb_network_offset(pkt));//skb_network_offset(pkt) is 4 And skb_push declared as: void *skb_push(struct sk_buff *skb, unsigned int len); skb->data -= len; //0xffff88805f86a84c - 0xfffffffc = 0xffff887f5f86a850 skb->data is set to 0xffff887f5f86a850, which is invalid mem addr, lead to skb_push() fails.
CVE-2023-53364 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regulator: da9063: better fix null deref with partial DT Two versions of the original patch were sent but V1 was merged instead of V2 due to a mistake. So update to V2. The advantage of V2 is that it completely avoids dereferencing the pointer, even just to take the address, which may fix problems with some compilers. Both versions work on my gcc 9.4 but use the safer one.
CVE-2023-53363 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix use-after-free in pci_bus_release_domain_nr() Commit c14f7ccc9f5d ("PCI: Assign PCI domain IDs by ida_alloc()") introduced a use-after-free bug in the bus removal cleanup. The issue was found with kfence: [ 19.293351] BUG: KFENCE: use-after-free read in pci_bus_release_domain_nr+0x10/0x70 [ 19.302817] Use-after-free read at 0x000000007f3b80eb (in kfence-#115): [ 19.309677] pci_bus_release_domain_nr+0x10/0x70 [ 19.309691] dw_pcie_host_deinit+0x28/0x78 [ 19.309702] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194] [ 19.309734] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194] [ 19.309752] platform_probe+0x90/0xd8 ... [ 19.311457] kfence-#115: 0x00000000063a155a-0x00000000ba698da8, size=1072, cache=kmalloc-2k [ 19.311469] allocated by task 96 on cpu 10 at 19.279323s: [ 19.311562] __kmem_cache_alloc_node+0x260/0x278 [ 19.311571] kmalloc_trace+0x24/0x30 [ 19.311580] pci_alloc_bus+0x24/0xa0 [ 19.311590] pci_register_host_bridge+0x48/0x4b8 [ 19.311601] pci_scan_root_bus_bridge+0xc0/0xe8 [ 19.311613] pci_host_probe+0x18/0xc0 [ 19.311623] dw_pcie_host_init+0x2c0/0x568 [ 19.311630] tegra_pcie_dw_probe+0x610/0xb28 [pcie_tegra194] [ 19.311647] platform_probe+0x90/0xd8 ... [ 19.311782] freed by task 96 on cpu 10 at 19.285833s: [ 19.311799] release_pcibus_dev+0x30/0x40 [ 19.311808] device_release+0x30/0x90 [ 19.311814] kobject_put+0xa8/0x120 [ 19.311832] device_unregister+0x20/0x30 [ 19.311839] pci_remove_bus+0x78/0x88 [ 19.311850] pci_remove_root_bus+0x5c/0x98 [ 19.311860] dw_pcie_host_deinit+0x28/0x78 [ 19.311866] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194] [ 19.311883] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194] [ 19.311900] platform_probe+0x90/0xd8 ... [ 19.313579] CPU: 10 PID: 96 Comm: kworker/u24:2 Not tainted 6.2.0 #4 [ 19.320171] Hardware name: /, BIOS 1.0-d7fb19b 08/10/2022 [ 19.325852] Workqueue: events_unbound deferred_probe_work_func The stack trace is a bit misleading as dw_pcie_host_deinit() doesn't directly call pci_bus_release_domain_nr(). The issue turns out to be in pci_remove_root_bus() which first calls pci_remove_bus() which frees the struct pci_bus when its struct device is released. Then pci_bus_release_domain_nr() is called and accesses the freed struct pci_bus. Reordering these fixes the issue.
CVE-2023-53362 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bus: fsl-mc: don't assume child devices are all fsl-mc devices Changes in VFIO caused a pseudo-device to be created as child of fsl-mc devices causing a crash [1] when trying to bind a fsl-mc device to VFIO. Fix this by checking the device type when enumerating fsl-mc child devices. [1] Modules linked in: Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP CPU: 6 PID: 1289 Comm: sh Not tainted 6.2.0-rc5-00047-g7c46948a6e9c #2 Hardware name: NXP Layerscape LX2160ARDB (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : mc_send_command+0x24/0x1f0 lr : dprc_get_obj_region+0xfc/0x1c0 sp : ffff80000a88b900 x29: ffff80000a88b900 x28: ffff48a9429e1400 x27: 00000000000002b2 x26: ffff48a9429e1718 x25: 0000000000000000 x24: 0000000000000000 x23: ffffd59331ba3918 x22: ffffd59331ba3000 x21: 0000000000000000 x20: ffff80000a88b9b8 x19: 0000000000000000 x18: 0000000000000001 x17: 7270642f636d2d6c x16: 73662e3030303030 x15: ffffffffffffffff x14: ffffd59330f1d668 x13: ffff48a8727dc389 x12: ffff48a8727dc386 x11: 0000000000000002 x10: 00008ceaf02f35d4 x9 : 0000000000000012 x8 : 0000000000000000 x7 : 0000000000000006 x6 : ffff80000a88bab0 x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffff80000a88b9e8 x2 : ffff80000a88b9e8 x1 : 0000000000000000 x0 : ffff48a945142b80 Call trace: mc_send_command+0x24/0x1f0 dprc_get_obj_region+0xfc/0x1c0 fsl_mc_device_add+0x340/0x590 fsl_mc_obj_device_add+0xd0/0xf8 dprc_scan_objects+0x1c4/0x340 dprc_scan_container+0x38/0x60 vfio_fsl_mc_probe+0x9c/0xf8 fsl_mc_driver_probe+0x24/0x70 really_probe+0xbc/0x2a8 __driver_probe_device+0x78/0xe0 device_driver_attach+0x30/0x68 bind_store+0xa8/0x130 drv_attr_store+0x24/0x38 sysfs_kf_write+0x44/0x60 kernfs_fop_write_iter+0x128/0x1b8 vfs_write+0x334/0x448 ksys_write+0x68/0xf0 __arm64_sys_write+0x1c/0x28 invoke_syscall+0x44/0x108 el0_svc_common.constprop.1+0x94/0xf8 do_el0_svc+0x38/0xb0 el0_svc+0x20/0x50 el0t_64_sync_handler+0x98/0xc0 el0t_64_sync+0x174/0x178 Code: aa0103f4 a9025bf5 d5384100 b9400801 (79401260) ---[ end trace 0000000000000000 ]---
CVE-2023-53361 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: LoongArch: mm: Add p?d_leaf() definitions When I do LTP test, LTP test case ksm06 caused panic at break_ksm_pmd_entry -> pmd_leaf (Huge page table but False) -> pte_present (panic) The reason is pmd_leaf() is not defined, So like commit 501b81046701 ("mips: mm: add p?d_leaf() definitions") add p?d_leaf() definition for LoongArch.
CVE-2023-53360 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: NFSv4.2: Rework scratch handling for READ_PLUS (again) I found that the read code might send multiple requests using the same nfs_pgio_header, but nfs4_proc_read_setup() is only called once. This is how we ended up occasionally double-freeing the scratch buffer, but also means we set a NULL pointer but non-zero length to the xdr scratch buffer. This results in an oops the first time decoding needs to copy something to scratch, which frequently happens when decoding READ_PLUS hole segments. I fix this by moving scratch handling into the pageio read code. I provide a function to allocate scratch space for decoding read replies, and free the scratch buffer when the nfs_pgio_header is freed.
CVE-2023-53359 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: USB: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once.