| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_re: avoid shift undefined behavior in bnxt_qplib_alloc_init_hwq
Undefined behavior is triggered when bnxt_qplib_alloc_init_hwq is called
with hwq_attr->aux_depth != 0 and hwq_attr->aux_stride == 0.
In that case, "roundup_pow_of_two(hwq_attr->aux_stride)" gets called.
roundup_pow_of_two is documented as undefined for 0.
Fix it in the one caller that had this combination.
The undefined behavior was detected by UBSAN:
UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13
shift exponent 64 is too large for 64-bit type 'long unsigned int'
CPU: 24 PID: 1075 Comm: (udev-worker) Not tainted 6.9.0-rc6+ #4
Hardware name: Abacus electric, s.r.o. - servis@abacus.cz Super Server/H12SSW-iN, BIOS 2.7 10/25/2023
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
ubsan_epilogue+0x5/0x30
__ubsan_handle_shift_out_of_bounds.cold+0x61/0xec
__roundup_pow_of_two+0x25/0x35 [bnxt_re]
bnxt_qplib_alloc_init_hwq+0xa1/0x470 [bnxt_re]
bnxt_qplib_create_qp+0x19e/0x840 [bnxt_re]
bnxt_re_create_qp+0x9b1/0xcd0 [bnxt_re]
? srso_alias_return_thunk+0x5/0xfbef5
? srso_alias_return_thunk+0x5/0xfbef5
? __kmalloc+0x1b6/0x4f0
? create_qp.part.0+0x128/0x1c0 [ib_core]
? __pfx_bnxt_re_create_qp+0x10/0x10 [bnxt_re]
create_qp.part.0+0x128/0x1c0 [ib_core]
ib_create_qp_kernel+0x50/0xd0 [ib_core]
create_mad_qp+0x8e/0xe0 [ib_core]
? __pfx_qp_event_handler+0x10/0x10 [ib_core]
ib_mad_init_device+0x2be/0x680 [ib_core]
add_client_context+0x10d/0x1a0 [ib_core]
enable_device_and_get+0xe0/0x1d0 [ib_core]
ib_register_device+0x53c/0x630 [ib_core]
? srso_alias_return_thunk+0x5/0xfbef5
bnxt_re_probe+0xbd8/0xe50 [bnxt_re]
? __pfx_bnxt_re_probe+0x10/0x10 [bnxt_re]
auxiliary_bus_probe+0x49/0x80
? driver_sysfs_add+0x57/0xc0
really_probe+0xde/0x340
? pm_runtime_barrier+0x54/0x90
? __pfx___driver_attach+0x10/0x10
__driver_probe_device+0x78/0x110
driver_probe_device+0x1f/0xa0
__driver_attach+0xba/0x1c0
bus_for_each_dev+0x8f/0xe0
bus_add_driver+0x146/0x220
driver_register+0x72/0xd0
__auxiliary_driver_register+0x6e/0xd0
? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re]
bnxt_re_mod_init+0x3e/0xff0 [bnxt_re]
? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re]
do_one_initcall+0x5b/0x310
do_init_module+0x90/0x250
init_module_from_file+0x86/0xc0
idempotent_init_module+0x121/0x2b0
__x64_sys_finit_module+0x5e/0xb0
do_syscall_64+0x82/0x160
? srso_alias_return_thunk+0x5/0xfbef5
? syscall_exit_to_user_mode_prepare+0x149/0x170
? srso_alias_return_thunk+0x5/0xfbef5
? syscall_exit_to_user_mode+0x75/0x230
? srso_alias_return_thunk+0x5/0xfbef5
? do_syscall_64+0x8e/0x160
? srso_alias_return_thunk+0x5/0xfbef5
? __count_memcg_events+0x69/0x100
? srso_alias_return_thunk+0x5/0xfbef5
? count_memcg_events.constprop.0+0x1a/0x30
? srso_alias_return_thunk+0x5/0xfbef5
? handle_mm_fault+0x1f0/0x300
? srso_alias_return_thunk+0x5/0xfbef5
? do_user_addr_fault+0x34e/0x640
? srso_alias_return_thunk+0x5/0xfbef5
? srso_alias_return_thunk+0x5/0xfbef5
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f4e5132821d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e3 db 0c 00 f7 d8 64 89 01 48
RSP: 002b:00007ffca9c906a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000139
RAX: ffffffffffffffda RBX: 0000563ec8a8f130 RCX: 00007f4e5132821d
RDX: 0000000000000000 RSI: 00007f4e518fa07d RDI: 000000000000003b
RBP: 00007ffca9c90760 R08: 00007f4e513f6b20 R09: 00007ffca9c906f0
R10: 0000563ec8a8faa0 R11: 0000000000000246 R12: 00007f4e518fa07d
R13: 0000000000020000 R14: 0000563ec8409e90 R15: 0000563ec8a8fa60
</TASK>
---[ end trace ]--- |
| null pointer dereference in mod_proxy in Apache HTTP Server 2.4.59 and earlier allows an attacker to crash the server via a malicious request.
Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
| Vulnerability in core of Apache HTTP Server 2.4.59 and earlier are vulnerably to information disclosure, SSRF or local script execution via backend applications whose response headers are malicious or exploitable.
Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
| urllib3 is a user-friendly HTTP client library for Python. When using urllib3's proxy support with `ProxyManager`, the `Proxy-Authorization` header is only sent to the configured proxy, as expected. However, when sending HTTP requests *without* using urllib3's proxy support, it's possible to accidentally configure the `Proxy-Authorization` header even though it won't have any effect as the request is not using a forwarding proxy or a tunneling proxy. In those cases, urllib3 doesn't treat the `Proxy-Authorization` HTTP header as one carrying authentication material and thus doesn't strip the header on cross-origin redirects. Because this is a highly unlikely scenario, we believe the severity of this vulnerability is low for almost all users. Out of an abundance of caution urllib3 will automatically strip the `Proxy-Authorization` header during cross-origin redirects to avoid the small chance that users are doing this on accident. Users should use urllib3's proxy support or disable automatic redirects to achieve safe processing of the `Proxy-Authorization` header, but we still decided to strip the header by default in order to further protect users who aren't using the correct approach. We believe the number of usages affected by this advisory is low. It requires all of the following to be true to be exploited: 1. Setting the `Proxy-Authorization` header without using urllib3's built-in proxy support. 2. Not disabling HTTP redirects. 3. Either not using an HTTPS origin server or for the proxy or target origin to redirect to a malicious origin. Users are advised to update to either version 1.26.19 or version 2.2.2. Users unable to upgrade may use the `Proxy-Authorization` header with urllib3's `ProxyManager`, disable HTTP redirects using `redirects=False` when sending requests, or not user the `Proxy-Authorization` header as mitigations. |
| Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. This vulnerability is fixed in 3.1.4. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: use timestamp to check for set element timeout
Add a timestamp field at the beginning of the transaction, store it
in the nftables per-netns area.
Update set backend .insert, .deactivate and sync gc path to use the
timestamp, this avoids that an element expires while control plane
transaction is still unfinished.
.lookup and .update, which are used from packet path, still use the
current time to check if the element has expired. And .get path and dump
also since this runs lockless under rcu read size lock. Then, there is
async gc which also needs to check the current time since it runs
asynchronously from a workqueue. |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u421, 8u421-perf, 11.0.24, 17.0.12, 21.0.4, 23; Oracle GraalVM for JDK: 17.0.12, 21.0.4, 23; Oracle GraalVM Enterprise Edition: 20.3.15 and 21.3.11. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized read access to a subset of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N). |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Serialization). Supported versions that are affected are Oracle Java SE: 8u421, 8u421-perf, 11.0.24, 17.0.12, 21.0.4, 23; Oracle GraalVM for JDK: 17.0.12, 21.0.4, 23; Oracle GraalVM Enterprise Edition: 20.3.15 and 21.3.11. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). |
| Vulnerability in Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u421, 8u421-perf, 11.0.24, 17.0.12, 21.0.4 and 23. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N). |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Networking). Supported versions that are affected are Oracle Java SE: 8u421, 8u421-perf, 11.0.24, 17.0.12, 21.0.4, 23; Oracle GraalVM for JDK: 17.0.12, 21.0.4, 23; Oracle GraalVM Enterprise Edition: 20.3.15 and 21.3.11. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Security). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 7.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N). |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Scripting). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21; Oracle GraalVM for JDK: 17.0.9; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 5.9 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N). |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 7.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N). |
| pgjdbc, the PostgreSQL JDBC Driver, allows attacker to inject SQL if using PreferQueryMode=SIMPLE. Note this is not the default. In the default mode there is no vulnerability. A placeholder for a numeric value must be immediately preceded by a minus. There must be a second placeholder for a string value after the first placeholder; both must be on the same line. By constructing a matching string payload, the attacker can inject SQL to alter the query,bypassing the protections that parameterized queries bring against SQL Injection attacks. Versions before 42.7.2, 42.6.1, 42.5.5, 42.4.4, 42.3.9, and 42.2.28 are affected. |
| Memory safety bugs present in Firefox 132, Firefox ESR 128.4, and Thunderbird 128.4. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 133, Firefox ESR < 128.5, Thunderbird < 133, and Thunderbird < 128.5. |
| When handling keypress events, an attacker may have been able to trick a user into bypassing the "Open Executable File?" confirmation dialog. This could have led to malicious code execution. This vulnerability affects Firefox < 133, Firefox ESR < 128.5, Thunderbird < 133, and Thunderbird < 128.5. |
| The application failed to account for exceptions thrown by the `loadManifestFromFile` method during add-on signature verification. This flaw, triggered by an invalid or unsupported extension manifest, could have caused runtime errors that disrupted the signature validation process. As a result, the enforcement of signature validation for unrelated add-ons may have been bypassed. Signature validation in this context is used to ensure that third-party applications on the user's computer have not tampered with the user's extensions, limiting the impact of this issue. This vulnerability affects Firefox < 133, Firefox ESR < 128.5, Thunderbird < 133, and Thunderbird < 128.5. |
| A crafted URL containing Arabic script and whitespace characters could have hidden the true origin of the page, resulting in a potential spoofing attack. This vulnerability affects Firefox < 133, Firefox ESR < 128.5, Thunderbird < 133, and Thunderbird < 128.5. |
| Enhanced Tracking Protection's Strict mode may have inadvertently allowed a CSP `frame-src` bypass and DOM-based XSS through the Google SafeFrame shim in the Web Compatibility extension. This issue could have exposed users to malicious frames masquerading as legitimate content. This vulnerability affects Firefox < 133, Firefox ESR < 128.5, Firefox ESR < 115.18, Thunderbird < 133, Thunderbird < 128.5, and Thunderbird < 115.18. |
| An attacker could cause a select dropdown to be shown over another tab; this could have led to user confusion and possible spoofing attacks. This vulnerability affects Firefox < 133, Firefox ESR < 128.5, Thunderbird < 133, and Thunderbird < 128.5. |