| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper bound check within AMD CPU microcode can allow a malicious guest to write to host memory, potentially resulting in loss of integrity. |
| Missing Checks in certain functions related to RMP initialization can allow a local admin privileged attacker to cause misidentification of I/O memory, potentially resulting in a loss of guest memory integrity |
| Improper input validation for some Server Firmware Update Utility(SysFwUpdt) before version 16.0.12 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with a privileged user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper isolation of shared resources on a system on a chip by a malicious local attacker with high privileges could potentially lead to a partial loss of integrity. |
| Improper initialization for some ESXi kernel mode driver for the Intel(R) Ethernet 800-Series before version 2.2.2.0 (esxi 8.0) & 2.2.3.0 (esxi 9.0) within Ring 1: Device Drivers may allow an information disclosure. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (low), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper input validation for some Server Firmware Update Utility(SysFwUpdt) before version 16.0.12 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with a privileged user combined with a high complexity attack may enable local code execution. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Null pointer dereference in the firmware for some Intel(R) AMT and Intel(R) Standard Manageability within Ring 0: Kernel may allow a denial of service. Network adversary with an unauthenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via network access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check for the Intel(R) Optane(TM) PMem management software before versions CR_MGMT_02.00.00.4052, CR_MGMT_03.00.00.0538 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable [cvss_threat_loss_factor]. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| An Improper Verification of Source of a Communication Channel vulnerability [CWE-940] vulnerability in Fortinet FortiOS 7.6.0 through 7.6.4, FortiOS 7.4.0 through 7.4.9, FortiOS 7.2 all versions, FortiOS 7.0 all versions may allow an authenticated user with knowledge of FSSO policy configurations to gain unauthorized access to protected network resources via crafted requests. |
| An Exposure of Sensitive Information to an Unauthorized Actor vulnerability [CWE-200] vulnerability in Fortinet FortiOS 7.6.0 through 7.6.1, FortiOS 7.4.0 through 7.4.6, FortiOS 7.2 all versions, FortiOS 7.0 all versions, FortiOS 6.4 all versions may allow a remote unauthenticated attacker to bypass the patch developed for the symbolic link persistency mechanism observed in some post-exploit cases, via crafted HTTP requests. An attacker would need first to have compromised the product via another vulnerability, at filesystem level. |
| Insufficient Granularity of Access Control in SEV firmware can allow a privileged attacker to create a SEV-ES Guest to attack SNP guest, potentially resulting in a loss of confidentiality. |
| An inconsistent interpretation of http requests ('http request smuggling') vulnerability in Fortinet FortiOS 7.6.0, FortiOS 7.4.0 through 7.4.9, FortiOS 7.2 all versions, FortiOS 7.0 all versions, FortiOS 6.4.3 through 6.4.16 may allow an unauthenticated attacker to smuggle an unlogged http request through the firewall policies via a specially crafted header |
| A use after free in the SEV firmware could allow a malicous hypervisor to activate a migrated guest with the SINGLE_SOCKET policy on a different socket than the migration agent potentially resulting in loss of integrity. |
| Improper handling of error condition during host-induced faults can allow a local high-privileged attack to selectively drop guest DMA writes, potentially resulting in a loss of SEV-SNP guest memory integrity |
| Information disclosure while decoding this RTP packet Payload when UE receives the RTP packet from the network. |
| A flaw was found in libsoup. This stack-based buffer overflow vulnerability occurs during the parsing of multipart HTTP responses due to an incorrect length calculation. A remote attacker can exploit this by sending a specially crafted multipart HTTP response, which can lead to memory corruption. This issue may result in application crashes or arbitrary code execution in applications that process untrusted server responses, and it does not require authentication or user interaction. |
| A flaw was identified in the NTLM authentication handling of the libsoup HTTP library, used by GNOME and other applications for network communication. When processing extremely long passwords, an internal size calculation can overflow due to improper use of signed integers. This results in incorrect memory allocation on the stack, followed by unsafe memory copying. As a result, applications using libsoup may crash unexpectedly, creating a denial-of-service risk. |
| Improper syscall input validation in ASP (AMD Secure Processor) may force the kernel into reading syscall parameter values from its own memory space allowing an attacker to infer the contents of the kernel memory leading to potential information disclosure. |
| Improper system call parameter validation in the Trusted OS may allow a malicious driver to perform mapping or unmapping operations on a large number of pages, potentially resulting in kernel memory corruption. |
| A flaw was found in Wildfly Elytron integration. The component does not implement sufficient measures to prevent multiple failed authentication attempts within a short time frame, making it more susceptible to brute force attacks via CLI. |