| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs: Fix panic about slab-out-of-bounds caused by ntfs_listxattr()
Here is a BUG report from syzbot:
BUG: KASAN: slab-out-of-bounds in ntfs_list_ea fs/ntfs3/xattr.c:191 [inline]
BUG: KASAN: slab-out-of-bounds in ntfs_listxattr+0x401/0x570 fs/ntfs3/xattr.c:710
Read of size 1 at addr ffff888021acaf3d by task syz-executor128/3632
Call Trace:
ntfs_list_ea fs/ntfs3/xattr.c:191 [inline]
ntfs_listxattr+0x401/0x570 fs/ntfs3/xattr.c:710
vfs_listxattr fs/xattr.c:457 [inline]
listxattr+0x293/0x2d0 fs/xattr.c:804
Fix the logic of ea_all iteration. When the ea->name_len is 0,
return immediately, or Add2Ptr() would visit invalid memory
in the next loop.
[almaz.alexandrovich@paragon-software.com: lines of the patch have changed] |
| In the Linux kernel, the following vulnerability has been resolved:
rcu: Protect rcu_print_task_exp_stall() ->exp_tasks access
For kernels built with CONFIG_PREEMPT_RCU=y, the following scenario can
result in a NULL-pointer dereference:
CPU1 CPU2
rcu_preempt_deferred_qs_irqrestore rcu_print_task_exp_stall
if (special.b.blocked) READ_ONCE(rnp->exp_tasks) != NULL
raw_spin_lock_rcu_node
np = rcu_next_node_entry(t, rnp)
if (&t->rcu_node_entry == rnp->exp_tasks)
WRITE_ONCE(rnp->exp_tasks, np)
....
raw_spin_unlock_irqrestore_rcu_node
raw_spin_lock_irqsave_rcu_node
t = list_entry(rnp->exp_tasks->prev,
struct task_struct, rcu_node_entry)
(if rnp->exp_tasks is NULL, this
will dereference a NULL pointer)
The problem is that CPU2 accesses the rcu_node structure's->exp_tasks
field without holding the rcu_node structure's ->lock and CPU2 did
not observe CPU1's change to rcu_node structure's ->exp_tasks in time.
Therefore, if CPU1 sets rcu_node structure's->exp_tasks pointer to NULL,
then CPU2 might dereference that NULL pointer.
This commit therefore holds the rcu_node structure's ->lock while
accessing that structure's->exp_tasks field.
[ paulmck: Apply Frederic Weisbecker feedback. ] |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: lpc32xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: sl811: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: isp1362: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: dwc3: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Note, the root dentry for the debugfs directory for the device needs to
be saved so we don't have to keep looking it up, which required a bit
more refactoring to properly create and remove it when needed. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: isp116x: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: bcm63xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
PM: EM: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: ULPI: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: base: component: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
trace/blktrace: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa27x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| e107 CMS version 3.2.1 contains a critical file upload vulnerability that allows authenticated administrators to override arbitrary server files through path traversal. The vulnerability exists in the Media Manager's remote URL upload functionality (image.php) where the upload_caption parameter is not properly sanitized. An attacker with administrative privileges can use directory traversal sequences (../../../) in the upload_caption field to overwrite critical system files outside the intended upload directory. This can lead to complete compromise of the web application by overwriting configuration files, executable scripts, or other critical system components. The vulnerability was discovered by Hubert Wojciechowski and affects the image.php component in the admin interface. |
| Ametys CMS v4.4.1 contains a persistent cross-site scripting vulnerability in the link directory's input fields for external links. Attackers can inject malicious script code in link text and descriptions to execute persistent attacks that compromise user sessions and manipulate application modules. |
| Cain & Abel 4.9.56 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated privileges. Attackers can exploit the unquoted binary path to inject malicious executables that will be launched with LocalSystem permissions. |
| Kyocera Command Center RX ECOSYS M2035dn contains a directory traversal vulnerability that allows unauthenticated attackers to read sensitive system files by manipulating file paths under the /js/ path. Attackers can exploit the issue by sending requests like /js/../../../../.../etc/passwd%00.jpg (null-byte appended traversal) to access critical files such as /etc/passwd and /etc/shadow. |
| BlueSoleilCS 5.4.277 contains an unquoted service path vulnerability in its Windows service configuration that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted binary path in 'C:\Program Files\IVT Corporation\BlueSoleil\BlueSoleilCS.exe' to inject malicious executables and escalate privileges. |
| Prowise Reflect version 1.0.9 contains a remote keystroke injection vulnerability that allows attackers to send keyboard events through an exposed WebSocket on port 8082. Attackers can craft malicious web pages to inject keystrokes, opening applications and typing arbitrary text by sending specific WebSocket messages. |