| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the group key handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11w allows reinstallation of the Integrity Group Temporal Key (IGTK) during the four-way handshake, allowing an attacker within radio range to spoof frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the four-way handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| CVS 1.12.x, when configured to use SSH for remote repositories, might allow remote attackers to execute arbitrary code via a repository URL with a crafted hostname, as demonstrated by "-oProxyCommand=id;localhost:/bar." |
| There is a stack-based buffer overflow in the lsx_ms_adpcm_block_expand_i function of adpcm.c in Sound eXchange (SoX) 14.4.2. A Crafted input will lead to a denial of service attack during conversion of an audio file. |
| Race condition in drivers/tty/n_hdlc.c in the Linux kernel through 4.10.1 allows local users to gain privileges or cause a denial of service (double free) by setting the HDLC line discipline. |
| The Linux kernel version 3.3-rc1 and later is affected by a vulnerability lies in the processing of incoming L2CAP commands - ConfigRequest, and ConfigResponse messages. This info leak is a result of uninitialized stack variables that may be returned to an attacker in their uninitialized state. By manipulating the code flows that precede the handling of these configuration messages, an attacker can also gain some control over which data will be held in the uninitialized stack variables. This can allow him to bypass KASLR, and stack canaries protection - as both pointers and stack canaries may be leaked in this manner. Combining this vulnerability (for example) with the previously disclosed RCE vulnerability in L2CAP configuration parsing (CVE-2017-1000251) may allow an attacker to exploit the RCE against kernels which were built with the above mitigations. These are the specifics of this vulnerability: In the function l2cap_parse_conf_rsp and in the function l2cap_parse_conf_req the following variable is declared without initialization: struct l2cap_conf_efs efs; In addition, when parsing input configuration parameters in both of these functions, the switch case for handling EFS elements may skip the memcpy call that will write to the efs variable: ... case L2CAP_CONF_EFS: if (olen == sizeof(efs)) memcpy(&efs, (void *)val, olen); ... The olen in the above if is attacker controlled, and regardless of that if, in both of these functions the efs variable would eventually be added to the outgoing configuration request that is being built: l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs), (unsigned long) &efs); So by sending a configuration request, or response, that contains an L2CAP_CONF_EFS element, but with an element length that is not sizeof(efs) - the memcpy to the uninitialized efs variable can be avoided, and the uninitialized variable would be returned to the attacker (16 bytes). |
| In libsamplerate before 0.1.9, a buffer over-read occurs in the calc_output_single function in src_sinc.c via a crafted audio file. |
| In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the NetScaler file parser could go into an infinite loop, triggered by a malformed capture file. This was addressed in wiretap/netscaler.c by ensuring a nonzero record size. |
| In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the IMAP dissector could crash, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-imap.c by calculating a line's end correctly. |
| The _zip_read_eocd64 function in zip_open.c in libzip before 1.3.0 mishandles EOCD records, which allows remote attackers to cause a denial of service (memory allocation failure in _zip_cdir_grow in zip_dirent.c) via a crafted ZIP archive. |
| GNOME Nautilus before 3.23.90 allows attackers to spoof a file type by using the .desktop file extension, as demonstrated by an attack in which a .desktop file's Name field ends in .pdf but this file's Exec field launches a malicious "sh -c" command. In other words, Nautilus provides no UI indication that a file actually has the potentially unsafe .desktop extension; instead, the UI only shows the .pdf extension. One (slightly) mitigating factor is that an attack requires the .desktop file to have execute permission. The solution is to ask the user to confirm that the file is supposed to be treated as a .desktop file, and then remember the user's answer in the metadata::trusted field. |
| OpenCV 3.3.1 has a Buffer Overflow in the cv::PxMDecoder::readData function in grfmt_pxm.cpp, because an incorrect size value is used. |
| Go before 1.8.4 and 1.9.x before 1.9.1 allows "go get" remote command execution. Using custom domains, it is possible to arrange things so that example.com/pkg1 points to a Subversion repository but example.com/pkg1/pkg2 points to a Git repository. If the Subversion repository includes a Git checkout in its pkg2 directory and some other work is done to ensure the proper ordering of operations, "go get" can be tricked into reusing this Git checkout for the fetch of code from pkg2. If the Subversion repository's Git checkout has malicious commands in .git/hooks/, they will execute on the system running "go get." |
| Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Difficult to exploit vulnerability allows unauthenticated attacker with network access via Kerberos to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: Applies to the Java SE Kerberos client. CVSS 3.0 Base Score 7.5 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H). |
| Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: Client programs). Supported versions that are affected are 5.5.57 and earlier, 5.6.37 and earlier and 5.7.19 and earlier. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all MySQL Server accessible data. CVSS 3.0 Base Score 6.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N). |
| INSERT ... ON CONFLICT DO UPDATE commands in PostgreSQL 10.x before 10.1, 9.6.x before 9.6.6, and 9.5.x before 9.5.10 disclose table contents that the invoker lacks privilege to read. These exploits affect only tables where the attacker lacks full read access but has both INSERT and UPDATE privileges. Exploits bypass row level security policies and lack of SELECT privilege. |
| In lsx_aiffstartread in aiff.c in Sound eXchange (SoX) 14.4.2, there is a Use-After-Free vulnerability triggered by supplying a malformed AIFF file. |
| Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: Server: Optimizer). Supported versions that are affected are 5.5.57 and earlier, 5.6.37 and earlier and 5.7.11 and earlier. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 6.5 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L). |