| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Fix double free in idxd_setup_wqs()
The clean up in idxd_setup_wqs() has had a couple bugs because the error
handling is a bit subtle. It's simpler to just re-write it in a cleaner
way. The issues here are:
1) If "idxd->max_wqs" is <= 0 then we call put_device(conf_dev) when
"conf_dev" hasn't been initialized.
2) If kzalloc_node() fails then again "conf_dev" is invalid. It's
either uninitialized or it points to the "conf_dev" from the
previous iteration so it leads to a double free.
It's better to free partial loop iterations within the loop and then
the unwinding at the end can handle whole loop iterations. I also
renamed the labels to describe what the goto does and not where the goto
was located. |
| In the Linux kernel, the following vulnerability has been resolved:
can: xilinx_can: xcan_write_frame(): fix use-after-free of transmitted SKB
can_put_echo_skb() takes ownership of the SKB and it may be freed
during or after the call.
However, xilinx_can xcan_write_frame() keeps using SKB after the call.
Fix that by only calling can_put_echo_skb() after the code is done
touching the SKB.
The tx_lock is held for the entire xcan_write_frame() execution and
also on the can_get_echo_skb() side so the order of operations does not
matter.
An earlier fix commit 3d3c817c3a40 ("can: xilinx_can: Fix usage of skb
memory") did not move the can_put_echo_skb() call far enough.
[mkl: add "commit" in front of sha1 in patch description]
[mkl: fix indention] |
| In the Linux kernel, the following vulnerability has been resolved:
net: fec: Fix possible NPD in fec_enet_phy_reset_after_clk_enable()
The function of_phy_find_device may return NULL, so we need to take
care before dereferencing phy_dev. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: fix use-after-free in state_show()
state_show() reads kdamond->damon_ctx without holding damon_sysfs_lock.
This allows a use-after-free race:
CPU 0 CPU 1
----- -----
state_show() damon_sysfs_turn_damon_on()
ctx = kdamond->damon_ctx; mutex_lock(&damon_sysfs_lock);
damon_destroy_ctx(kdamond->damon_ctx);
kdamond->damon_ctx = NULL;
mutex_unlock(&damon_sysfs_lock);
damon_is_running(ctx); /* ctx is freed */
mutex_lock(&ctx->kdamond_lock); /* UAF */
(The race can also occur with damon_sysfs_kdamonds_rm_dirs() and
damon_sysfs_kdamond_release(), which free or replace the context under
damon_sysfs_lock.)
Fix by taking damon_sysfs_lock before dereferencing the context, mirroring
the locking used in pid_show().
The bug has existed since state_show() first accessed kdamond->damon_ctx. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix invalid accesses to ceph_connection_v1_info
There is a place where generic code in messenger.c is reading and
another place where it is writing to con->v1 union member without
checking that the union member is active (i.e. msgr1 is in use).
On 64-bit systems, con->v1.auth_retry overlaps with con->v2.out_iter,
so such a read is almost guaranteed to return a bogus value instead of
0 when msgr2 is in use. This ends up being fairly benign because the
side effect is just the invalidation of the authorizer and successive
fetching of new tickets.
con->v1.connect_seq overlaps with con->v2.conn_bufs and the fact that
it's being written to can cause more serious consequences, but luckily
it's not something that happens often. |
| Icinga Director is an Icinga config deployment tool. A Security vulnerability has been found starting in version 1.0.0 and prior to 1.10.4 and 1.11.4 on several director endpoints of REST API. To reproduce this vulnerability an authenticated user with permission to access the Director is required (plus api access with regard to the api endpoints). And even though some of these Icinga Director users are restricted from accessing certain objects, are able to retrieve information related to them if their name is known. This makes it possible to change the configuration of these objects by those Icinga Director users restricted from accessing them. This results in further exploitation, data breaches and sensitive information disclosure. Affected endpoints include icingaweb2/director/service, if the host name is left out of the query; icingaweb2/directore/notification; icingaweb2/director/serviceset; and icingaweb2/director/scheduled-downtime. In addition, the endpoint `icingaweb2/director/services?host=filteredHostName` returns a status code 200 even though the services for the host is filtered. This in turn lets the restricted user know that the host `filteredHostName` exists even though the user is restricted from accessing it. This could again result in further exploitation of this information and data breaches. Icinga Director has patches in versions 1.10.4 and 1.11.4. If upgrading is not feasible, disable the director module for the users other than admin role for the time being. |
| A weakness has been identified in MiczFlor RPi-Jukebox-RFID up to 2.8.0. Affected by this vulnerability is an unknown functionality of the file /htdocs/api/playlist/shuffle.php. Executing manipulation of the argument playlist can lead to os command injection. The attack can be launched remotely. The exploit has been made available to the public and could be exploited. The vendor was contacted early about this disclosure but did not respond in any way. |
| D-Link DSL-3788 revA1 1.01R1B036_EU_EN is vulnerable to Buffer Overflow via the COMM_MAKECustomMsg function of the webproc cgi |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly
When an extended state component is not present in fpstate, but in init
state, the function copies from init_fpstate via copy_feature().
But, dynamic states are not present in init_fpstate because of all-zeros
init states. Then retrieving them from init_fpstate will explode like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
RIP: 0010:memcpy_erms+0x6/0x10
? __copy_xstate_to_uabi_buf+0x381/0x870
fpu_copy_guest_fpstate_to_uabi+0x28/0x80
kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm]
? __this_cpu_preempt_check+0x13/0x20
? vmx_vcpu_put+0x2e/0x260 [kvm_intel]
kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? __fget_light+0xd4/0x130
__x64_sys_ioctl+0xe3/0x910
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x27/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Adjust the 'mask' to zero out the userspace buffer for the features that
are not available both from fpstate and from init_fpstate.
The dynamic features depend on the compacted XSAVE format. Ensure it is
enabled before reading XCOMP_BV in init_fpstate. |
| In the Linux kernel, the following vulnerability has been resolved:
remoteproc: imx_dsp_rproc: Add mutex protection for workqueue
The workqueue may execute late even after remoteproc is stopped or
stopping, some resources (rpmsg device and endpoint) have been
released in rproc_stop_subdevices(), then rproc_vq_interrupt()
accessing these resources will cause kennel dump.
Call trace:
virtqueue_add_split+0x1ac/0x560
virtqueue_add_inbuf+0x4c/0x60
rpmsg_recv_done+0x15c/0x294
vring_interrupt+0x6c/0xa4
rproc_vq_interrupt+0x30/0x50
imx_dsp_rproc_vq_work+0x24/0x40 [imx_dsp_rproc]
process_one_work+0x1d0/0x354
worker_thread+0x13c/0x470
kthread+0x154/0x160
ret_from_fork+0x10/0x20
Add mutex protection in imx_dsp_rproc_vq_work(), if the state is
not running, then just skip calling rproc_vq_interrupt().
Also the flush workqueue operation can't be added in rproc stop
for the same reason. The call sequence is
rproc_shutdown
-> rproc_stop
->rproc_stop_subdevices
->rproc->ops->stop()
->imx_dsp_rproc_stop
->flush_work
-> rproc_vq_interrupt
The resource needed by rproc_vq_interrupt has been released in
rproc_stop_subdevices, so flush_work is not safe to be called in
imx_dsp_rproc_stop. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27668. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27675. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27677. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27678. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27680. |
| A vulnerability was found in TOZED ZLT M30s up to 1.47. Impacted is an unknown function of the file /reqproc/proc_post of the component Web Management Interface. Performing manipulation of the argument goformId results in information disclosure. It is possible to initiate the attack remotely. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was determined in TOZED ZLT M30s up to 1.47. The affected element is an unknown function of the component UART Interface. Executing manipulation can lead to on-chip debug and test interface with improper access control. The physical device can be targeted for the attack. Attacks of this nature are highly complex. The exploitability is described as difficult. The exploit has been publicly disclosed and may be utilized. The vendor was contacted early about this disclosure but did not respond in any way. |
| In Eclipse Vert.x versions [4.0.0, 4.5.21] and [5.0.0, 5.0.4], when "directory listing" is enabled, file and directory names are inserted into generated HTML without proper escaping in the href, title, and link attributes. An attacker who can create or rename files or directories within a served path can craft filenames containing malicious script or HTML content, leading to stored cross-site scripting (XSS) that executes in the context of users viewing the affected directory listing. |
| A security flaw has been discovered in Edimax BR-6208AC 1.02/1.03. Affected by this vulnerability is the function formRoute of the file /gogorm/formRoute of the component Web-based Configuration Interface. The manipulation of the argument strIp/strMask/strGateway results in command injection. The attack can be executed remotely. The exploit has been released to the public and may be exploited. Edimax confirms this issue: "The product mentioned, EDIMAX BR-6208AC V2, has reached its End of Life (EOL) status. It is no longer supported or maintained by Edimax, and it is no longer available for purchase in the market. Consequently, there will be no further firmware updates or patches for this device. We recommend users upgrade to newer models for better security." This vulnerability only affects products that are no longer supported by the maintainer. |
| Delta Electronics DIAView has Command Injection vulnerability. |