| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Apply the link chain quirk on NEC isoc endpoints
Two clearly different specimens of NEC uPD720200 (one with start/stop
bug, one without) were seen to cause IOMMU faults after some Missed
Service Errors. Faulting address is immediately after a transfer ring
segment and patched dynamic debug messages revealed that the MSE was
received when waiting for a TD near the end of that segment:
[ 1.041954] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ffa08fe0
[ 1.042120] xhci_hcd: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0005 address=0xffa09000 flags=0x0000]
[ 1.042146] xhci_hcd: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0005 address=0xffa09040 flags=0x0000]
It gets even funnier if the next page is a ring segment accessible to
the HC. Below, it reports MSE in segment at ff1e8000, plows through a
zero-filled page at ff1e9000 and starts reporting events for TRBs in
page at ff1ea000 every microframe, instead of jumping to seg ff1e6000.
[ 7.041671] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ff1e8fe0
[ 7.041999] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ff1e8fe0
[ 7.042011] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint
[ 7.042028] xhci_hcd: All TDs skipped for slot 1 ep 2. Clear skip flag.
[ 7.042134] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint
[ 7.042138] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 31
[ 7.042144] xhci_hcd: Looking for event-dma 00000000ff1ea040 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
[ 7.042259] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint
[ 7.042262] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 31
[ 7.042266] xhci_hcd: Looking for event-dma 00000000ff1ea050 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
At some point completion events change from Isoch Buffer Overrun to
Short Packet and the HC finally finds cycle bit mismatch in ff1ec000.
[ 7.098130] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 13
[ 7.098132] xhci_hcd: Looking for event-dma 00000000ff1ecc50 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
[ 7.098254] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 13
[ 7.098256] xhci_hcd: Looking for event-dma 00000000ff1ecc60 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
[ 7.098379] xhci_hcd: Overrun event on slot 1 ep 2
It's possible that data from the isochronous device were written to
random buffers of pending TDs on other endpoints (either IN or OUT),
other devices or even other HCs in the same IOMMU domain.
Lastly, an error from a different USB device on another HC. Was it
caused by the above? I don't know, but it may have been. The disk
was working without any other issues and generated PCIe traffic to
starve the NEC of upstream BW and trigger those MSEs. The two HCs
shared one x1 slot by means of a commercial "PCIe splitter" board.
[ 7.162604] usb 10-2: reset SuperSpeed USB device number 3 using xhci_hcd
[ 7.178990] sd 9:0:0:0: [sdb] tag#0 UNKNOWN(0x2003) Result: hostbyte=0x07 driverbyte=DRIVER_OK cmd_age=0s
[ 7.179001] sd 9:0:0:0: [sdb] tag#0 CDB: opcode=0x28 28 00 04 02 ae 00 00 02 00 00
[ 7.179004] I/O error, dev sdb, sector 67284480 op 0x0:(READ) flags 0x80700 phys_seg 5 prio class 0
Fortunately, it appears that this ridiculous bug is avoided by setting
the chain bit of Link TRBs on isochronous rings. Other ancient HCs are
known which also expect the bit to be set and they ignore Link TRBs if
it's not. Reportedly, 0.95 spec guaranteed that the bit is set.
The bandwidth-starved NEC HC running a 32KB/uframe UVC endpoint reports
tens of MSEs per second and runs into the bug within seconds. Chaining
Link TRBs allows the same workload to run for many minutes, many times.
No ne
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: filesystems without casefold feature cannot be mounted with siphash
When mounting the ext4 filesystem, if the default hash version is set to
DX_HASH_SIPHASH but the casefold feature is not set, exit the mounting. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Acquire kvm->srcu when handling KVM_SET_VCPU_EVENTS
Grab kvm->srcu when processing KVM_SET_VCPU_EVENTS, as KVM will forcibly
leave nested VMX/SVM if SMM mode is being toggled, and leaving nested VMX
reads guest memory.
Note, kvm_vcpu_ioctl_x86_set_vcpu_events() can also be called from KVM_RUN
via sync_regs(), which already holds SRCU. I.e. trying to precisely use
kvm_vcpu_srcu_read_lock() around the problematic SMM code would cause
problems. Acquiring SRCU isn't all that expensive, so for simplicity,
grab it unconditionally for KVM_SET_VCPU_EVENTS.
=============================
WARNING: suspicious RCU usage
6.10.0-rc7-332d2c1d713e-next-vm #552 Not tainted
-----------------------------
include/linux/kvm_host.h:1027 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by repro/1071:
#0: ffff88811e424430 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0x7d/0x970 [kvm]
stack backtrace:
CPU: 15 PID: 1071 Comm: repro Not tainted 6.10.0-rc7-332d2c1d713e-next-vm #552
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x7f/0x90
lockdep_rcu_suspicious+0x13f/0x1a0
kvm_vcpu_gfn_to_memslot+0x168/0x190 [kvm]
kvm_vcpu_read_guest+0x3e/0x90 [kvm]
nested_vmx_load_msr+0x6b/0x1d0 [kvm_intel]
load_vmcs12_host_state+0x432/0xb40 [kvm_intel]
vmx_leave_nested+0x30/0x40 [kvm_intel]
kvm_vcpu_ioctl_x86_set_vcpu_events+0x15d/0x2b0 [kvm]
kvm_arch_vcpu_ioctl+0x1107/0x1750 [kvm]
? mark_held_locks+0x49/0x70
? kvm_vcpu_ioctl+0x7d/0x970 [kvm]
? kvm_vcpu_ioctl+0x497/0x970 [kvm]
kvm_vcpu_ioctl+0x497/0x970 [kvm]
? lock_acquire+0xba/0x2d0
? find_held_lock+0x2b/0x80
? do_user_addr_fault+0x40c/0x6f0
? lock_release+0xb7/0x270
__x64_sys_ioctl+0x82/0xb0
do_syscall_64+0x6c/0x170
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7ff11eb1b539
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethtool: fix the error condition in ethtool_get_phy_stats_ethtool()
Clang static checker (scan-build) warning:
net/ethtool/ioctl.c:line 2233, column 2
Called function pointer is null (null dereference).
Return '-EOPNOTSUPP' when 'ops->get_ethtool_phy_stats' is NULL to fix
this typo error. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix uninit-value access in __ip_make_skb()
KMSAN reported uninit-value access in __ip_make_skb() [1]. __ip_make_skb()
tests HDRINCL to know if the skb has icmphdr. However, HDRINCL can cause a
race condition. If calling setsockopt(2) with IP_HDRINCL changes HDRINCL
while __ip_make_skb() is running, the function will access icmphdr in the
skb even if it is not included. This causes the issue reported by KMSAN.
Check FLOWI_FLAG_KNOWN_NH on fl4->flowi4_flags instead of testing HDRINCL
on the socket.
Also, fl4->fl4_icmp_type and fl4->fl4_icmp_code are not initialized. These
are union in struct flowi4 and are implicitly initialized by
flowi4_init_output(), but we should not rely on specific union layout.
Initialize these explicitly in raw_sendmsg().
[1]
BUG: KMSAN: uninit-value in __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
__ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
ip_finish_skb include/net/ip.h:243 [inline]
ip_push_pending_frames+0x4c/0x5c0 net/ipv4/ip_output.c:1508
raw_sendmsg+0x2381/0x2690 net/ipv4/raw.c:654
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x5f6/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13c/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35a/0x7c0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
__ip_append_data+0x49ab/0x68c0 net/ipv4/ip_output.c:1128
ip_append_data+0x1e7/0x260 net/ipv4/ip_output.c:1365
raw_sendmsg+0x22b1/0x2690 net/ipv4/raw.c:648
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 15709 Comm: syz-executor.7 Not tainted 6.8.0-11567-gb3603fcb79b1 #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix potential uninit-value access in __ip6_make_skb()
As it was done in commit fc1092f51567 ("ipv4: Fix uninit-value access in
__ip_make_skb()") for IPv4, check FLOWI_FLAG_KNOWN_NH on fl6->flowi6_flags
instead of testing HDRINCL on the socket to avoid a race condition which
causes uninit-value access. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Fix UAF during logout when accessing the shost ipaddress
Bug report and analysis from Ding Hui.
During iSCSI session logout, if another task accesses the shost ipaddress
attr, we can get a KASAN UAF report like this:
[ 276.942144] BUG: KASAN: use-after-free in _raw_spin_lock_bh+0x78/0xe0
[ 276.942535] Write of size 4 at addr ffff8881053b45b8 by task cat/4088
[ 276.943511] CPU: 2 PID: 4088 Comm: cat Tainted: G E 6.1.0-rc8+ #3
[ 276.943997] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020
[ 276.944470] Call Trace:
[ 276.944943] <TASK>
[ 276.945397] dump_stack_lvl+0x34/0x48
[ 276.945887] print_address_description.constprop.0+0x86/0x1e7
[ 276.946421] print_report+0x36/0x4f
[ 276.947358] kasan_report+0xad/0x130
[ 276.948234] kasan_check_range+0x35/0x1c0
[ 276.948674] _raw_spin_lock_bh+0x78/0xe0
[ 276.949989] iscsi_sw_tcp_host_get_param+0xad/0x2e0 [iscsi_tcp]
[ 276.951765] show_host_param_ISCSI_HOST_PARAM_IPADDRESS+0xe9/0x130 [scsi_transport_iscsi]
[ 276.952185] dev_attr_show+0x3f/0x80
[ 276.953005] sysfs_kf_seq_show+0x1fb/0x3e0
[ 276.953401] seq_read_iter+0x402/0x1020
[ 276.954260] vfs_read+0x532/0x7b0
[ 276.955113] ksys_read+0xed/0x1c0
[ 276.955952] do_syscall_64+0x38/0x90
[ 276.956347] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 276.956769] RIP: 0033:0x7f5d3a679222
[ 276.957161] Code: c0 e9 b2 fe ff ff 50 48 8d 3d 32 c0 0b 00 e8 a5 fe 01 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 ec 28 48 89 54 24
[ 276.958009] RSP: 002b:00007ffc864d16a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
[ 276.958431] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5d3a679222
[ 276.958857] RDX: 0000000000020000 RSI: 00007f5d3a4fe000 RDI: 0000000000000003
[ 276.959281] RBP: 00007f5d3a4fe000 R08: 00000000ffffffff R09: 0000000000000000
[ 276.959682] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000020000
[ 276.960126] R13: 0000000000000003 R14: 0000000000000000 R15: 0000557a26dada58
[ 276.960536] </TASK>
[ 276.961357] Allocated by task 2209:
[ 276.961756] kasan_save_stack+0x1e/0x40
[ 276.962170] kasan_set_track+0x21/0x30
[ 276.962557] __kasan_kmalloc+0x7e/0x90
[ 276.962923] __kmalloc+0x5b/0x140
[ 276.963308] iscsi_alloc_session+0x28/0x840 [scsi_transport_iscsi]
[ 276.963712] iscsi_session_setup+0xda/0xba0 [libiscsi]
[ 276.964078] iscsi_sw_tcp_session_create+0x1fd/0x330 [iscsi_tcp]
[ 276.964431] iscsi_if_create_session.isra.0+0x50/0x260 [scsi_transport_iscsi]
[ 276.964793] iscsi_if_recv_msg+0xc5a/0x2660 [scsi_transport_iscsi]
[ 276.965153] iscsi_if_rx+0x198/0x4b0 [scsi_transport_iscsi]
[ 276.965546] netlink_unicast+0x4d5/0x7b0
[ 276.965905] netlink_sendmsg+0x78d/0xc30
[ 276.966236] sock_sendmsg+0xe5/0x120
[ 276.966576] ____sys_sendmsg+0x5fe/0x860
[ 276.966923] ___sys_sendmsg+0xe0/0x170
[ 276.967300] __sys_sendmsg+0xc8/0x170
[ 276.967666] do_syscall_64+0x38/0x90
[ 276.968028] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 276.968773] Freed by task 2209:
[ 276.969111] kasan_save_stack+0x1e/0x40
[ 276.969449] kasan_set_track+0x21/0x30
[ 276.969789] kasan_save_free_info+0x2a/0x50
[ 276.970146] __kasan_slab_free+0x106/0x190
[ 276.970470] __kmem_cache_free+0x133/0x270
[ 276.970816] device_release+0x98/0x210
[ 276.971145] kobject_cleanup+0x101/0x360
[ 276.971462] iscsi_session_teardown+0x3fb/0x530 [libiscsi]
[ 276.971775] iscsi_sw_tcp_session_destroy+0xd8/0x130 [iscsi_tcp]
[ 276.972143] iscsi_if_recv_msg+0x1bf1/0x2660 [scsi_transport_iscsi]
[ 276.972485] iscsi_if_rx+0x198/0x4b0 [scsi_transport_iscsi]
[ 276.972808] netlink_unicast+0x4d5/0x7b0
[ 276.973201] netlink_sendmsg+0x78d/0xc30
[ 276.973544] sock_sendmsg+0xe5/0x120
[ 276.973864] ____sys_sendmsg+0x5fe/0x860
[ 276.974248] ___sys_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: Use "buf" flexible array for memcpy() destination
The "buf" flexible array needs to be the memcpy() destination to avoid
false positive run-time warning from the recent FORTIFY_SOURCE
hardening:
memcpy: detected field-spanning write (size 93) of single field "&fh->fb"
at fs/overlayfs/export.c:799 (size 21) |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: core: use sysfs_emit() instead of sprintf()
sprintf() (still used in the MMC core for the sysfs output) is vulnerable
to the buffer overflow. Use the new-fangled sysfs_emit() instead.
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
sock_map: avoid race between sock_map_close and sk_psock_put
sk_psock_get will return NULL if the refcount of psock has gone to 0, which
will happen when the last call of sk_psock_put is done. However,
sk_psock_drop may not have finished yet, so the close callback will still
point to sock_map_close despite psock being NULL.
This can be reproduced with a thread deleting an element from the sock map,
while the second one creates a socket, adds it to the map and closes it.
That will trigger the WARN_ON_ONCE:
------------[ cut here ]------------
WARNING: CPU: 1 PID: 7220 at net/core/sock_map.c:1701 sock_map_close+0x2a2/0x2d0 net/core/sock_map.c:1701
Modules linked in:
CPU: 1 PID: 7220 Comm: syz-executor380 Not tainted 6.9.0-syzkaller-07726-g3c999d1ae3c7 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
RIP: 0010:sock_map_close+0x2a2/0x2d0 net/core/sock_map.c:1701
Code: df e8 92 29 88 f8 48 8b 1b 48 89 d8 48 c1 e8 03 42 80 3c 20 00 74 08 48 89 df e8 79 29 88 f8 4c 8b 23 eb 89 e8 4f 15 23 f8 90 <0f> 0b 90 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d e9 13 26 3d 02
RSP: 0018:ffffc9000441fda8 EFLAGS: 00010293
RAX: ffffffff89731ae1 RBX: ffffffff94b87540 RCX: ffff888029470000
RDX: 0000000000000000 RSI: ffffffff8bcab5c0 RDI: ffffffff8c1faba0
RBP: 0000000000000000 R08: ffffffff92f9b61f R09: 1ffffffff25f36c3
R10: dffffc0000000000 R11: fffffbfff25f36c4 R12: ffffffff89731840
R13: ffff88804b587000 R14: ffff88804b587000 R15: ffffffff89731870
FS: 000055555e080380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000000207d4000 CR4: 0000000000350ef0
Call Trace:
<TASK>
unix_release+0x87/0xc0 net/unix/af_unix.c:1048
__sock_release net/socket.c:659 [inline]
sock_close+0xbe/0x240 net/socket.c:1421
__fput+0x42b/0x8a0 fs/file_table.c:422
__do_sys_close fs/open.c:1556 [inline]
__se_sys_close fs/open.c:1541 [inline]
__x64_sys_close+0x7f/0x110 fs/open.c:1541
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fb37d618070
Code: 00 00 48 c7 c2 b8 ff ff ff f7 d8 64 89 02 b8 ff ff ff ff eb d4 e8 10 2c 00 00 80 3d 31 f0 07 00 00 74 17 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 48 c3 0f 1f 80 00 00 00 00 48 83 ec 18 89 7c
RSP: 002b:00007ffcd4a525d8 EFLAGS: 00000202 ORIG_RAX: 0000000000000003
RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007fb37d618070
RDX: 0000000000000010 RSI: 00000000200001c0 RDI: 0000000000000004
RBP: 0000000000000000 R08: 0000000100000000 R09: 0000000100000000
R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Use sk_psock, which will only check that the pointer is not been set to
NULL yet, which should only happen after the callbacks are restored. If,
then, a reference can still be gotten, we may call sk_psock_stop and cancel
psock->work.
As suggested by Paolo Abeni, reorder the condition so the control flow is
less convoluted.
After that change, the reproducer does not trigger the WARN_ON_ONCE
anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add max vqp attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa max vqp attr to avoid
such bugs. |
| A stored cross-site scripting (XSS) vulnerability exists in the Altium Support Center AddComment endpoint due to missing server-side input sanitization. Although the client interface applies HTML escaping, the backend accepts and stores arbitrary HTML and JavaScript supplied via modified POST requests.
The injected content is rendered verbatim when support cases are viewed by other users, including support staff with elevated privileges, allowing execution of arbitrary JavaScript in the victim’s browser context. |
| A stored cross-site scripting (XSS) vulnerability exists in the Altium Workflow Engine due to missing server-side input sanitization in workflow form submission APIs. A regular authenticated user can inject arbitrary JavaScript into workflow data.
When an administrator views the affected workflow, the injected payload executes in the administrator’s browser context, allowing privilege escalation, including creation of new administrator accounts, session token theft, and execution of administrative actions. |
| A stored cross-site scripting (XSS) vulnerability exists in the user profile text fields of Altium 365. Insufficient server-side input sanitization allows authenticated users to inject arbitrary HTML and JavaScript payloads using whitespace-based attribute parsing bypass techniques.
The injected payload is persisted and executed when other users view the affected profile page, potentially allowing session token theft, phishing attacks, or malicious redirects. Exploitation requires an authenticated account and user interaction to view the crafted profile. |
| No description is available for this CVE. |
| An issue in Automai Director v.25.2.0 allows a remote attacker to execute arbitrary code via the update mechanism |
| A static password reset token in the password reset function of DDSN Interactive Acora CMS v10.7.1 allows attackers to arbitrarily reset the user password and execute a full account takeover via a replay attack. |
| A path traversal vulnerability exists in Zen MCP Server before 9.8.2 that allows authenticated attackers to read arbitrary files on the system. The vulnerability is caused by flawed logic in the is_dangerous_path() validation function that uses exact string matching against a blacklist of system directories. Attackers can bypass these restrictions by accessing subdirectories of blacklisted paths. |
| An issue in Automai BotManager v.25.2.0 allows a remote attacker to execute arbitrary code via the BotManager.exe component |
| An issue in Automai Director v.25.2.0 allows a remote attacker to escalate privileges and obtain sensitive information via a crafted js file |